nn_ds_neibs3.py 53.7 KB
Newer Older
Andrey Filippov's avatar
Andrey Filippov committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
#!/usr/bin/env python3
from numpy import float64
from tensorflow.contrib.losses.python.metric_learning.metric_loss_ops import npairs_loss

__copyright__ = "Copyright 2018, Elphel, Inc."
__license__   = "GPL-3.0+"
__email__     = "andrey@elphel.com"


from PIL import Image

import os
import sys
import glob

import numpy as np
import itertools

import time

import matplotlib.pyplot as plt

import shutil

TIME_START = time.time()
TIME_LAST  = TIME_START
DEBUG_LEVEL= 1
DISP_BATCH_BINS =   20 # Number of batch disparity bins
STR_BATCH_BINS =    10 # Number of batch strength bins
FILES_PER_SCENE =    5 # number of random offset files for the scene to select from (0 - use all available)
#MIN_BATCH_CHOICES = 10 # minimal number of tiles in a file for each bin to select from 
#MAX_BATCH_FILES =   10 #maximal number of files to use in a batch
#MAX_EPOCH =        500
LR =               1e-3 # learning rate
LR100 =            1e-4
LR200 =            3e-5
LR400 =            1e-5
LR600 =            3e-6
USE_CONFIDENCE =     False
ABSOLUTE_DISPARITY = False # True # False # True # False
DEBUG_PLT_LOSS =     True
TILE_LAYERS =        4
FILE_TILE_SIDE =     9
TILE_SIDE =          9 # 7
TILE_SIZE =         TILE_SIDE* TILE_SIDE # == 81
FEATURES_PER_TILE =  TILE_LAYERS * TILE_SIZE# == 324
EPOCHS_TO_RUN =     1000#0 #0
EPOCHS_FULL_TEST =   5 # 10 # 25# repeat full image test after this number of epochs
EPOCHS_SAME_FILE =   20
RUN_TOT_AVG =       100 # last batches to average. Epoch is 307 training  batches  
#BATCH_SIZE =       1080//9 # == 120 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
BATCH_SIZE =       2*1080//9 # == 120 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SHUFFLE_EPOCH =    True
NET_ARCH1 =          8 # 0 # 7 # 2 #0 # 6 #0 # 4 # 3 # overwrite with argv?
NET_ARCH2 =          3 # 0 # 2 #0 # 6 # 0 # 3 # overwrite with argv?
SYM8_SUB =         True # False # True # False # enforce inputs from 2d correlation have symmetrical ones (groups of 8)
ONLY_TILE =        None # 4 # None # 0 # 4# None # (remove all but center tile data), put None here for normal operation)
ZIP_LHVAR =        True # combine _lvar and _hvar as odd/even elements 

#DEBUG_PACK_TILES = True
SUFFIX=str(NET_ARCH1)+'-'+str(NET_ARCH2)+ (["R","A"][ABSOLUTE_DISPARITY]) +(["NS","S8"][SYM8_SUB])
# CLUSTER_RADIUS should match input data
CLUSTER_RADIUS =     1 # 1 - 3x3, 2 - 5x5 tiles

NN_LAYOUTS = {0:[0,   0,   0,   32,  20,  16],
              1:[0,   0,   0,  256, 128,  64],
              2:[0, 128,  32,   32,  32,  16],
              3:[0,   0,  40,   32,  20,  16],
              4:[0,   0,   0,    0,  16,  16],
              5:[0,   0,  64,   32,  32,  16],
              6:[0,   0,  32,   16,  16,  16],
              7:[0,   0,  64,   16,  16,  16],
              8:[0,   0,   0,   64,  20,  16],
              }
NN_LAYOUT1 = NN_LAYOUTS[NET_ARCH1]
NN_LAYOUT2 = NN_LAYOUTS[NET_ARCH2]

#http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python
class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[38;5;214m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    BOLDWHITE = '\033[1;37m'
    UNDERLINE = '\033[4m'
def print_time(txt="",end="\n"):
    global TIME_LAST
    t = time.time()
    if txt:
        txt +=" "
    print(("%s"+bcolors.BOLDWHITE+"at %.4fs (+%.4fs)"+bcolors.ENDC)%(txt,t-TIME_START,t-TIME_LAST), end = end, flush=True)
    TIME_LAST = t
#reading to memory (testing)
def readTFRewcordsEpoch(train_filename):
#    filenames = [train_filename]
#    dataset = tf.data.TFRecorDataset(filenames)
    if not  '.tfrecords' in train_filename:
        train_filename += '.tfrecords'
    npy_dir_name = "npy"
    dirname = os.path.dirname(train_filename) 
    npy_dir = os.path.join(dirname, npy_dir_name)
    filebasename, file_extension = os.path.splitext(train_filename)
    filebasename = os.path.basename(filebasename)
    file_corr2d =           os.path.join(npy_dir,filebasename + '_corr2d.npy')
    file_target_disparity = os.path.join(npy_dir,filebasename + '_target_disparity.npy')
    file_gt_ds =            os.path.join(npy_dir,filebasename + '_gt_ds.npy')
    if (os.path.exists(file_corr2d) and
        os.path.exists(file_target_disparity) and
        os.path.exists(file_gt_ds)):
        corr2d=            np.load (file_corr2d)
        target_disparity = np.load(file_target_disparity)
        gt_ds =            np.load(file_gt_ds)
        pass
    else:     
        record_iterator = tf.python_io.tf_record_iterator(path=train_filename)
        corr2d_list=[]
        target_disparity_list=[]
        gt_ds_list = []
        for string_record in record_iterator:
            example = tf.train.Example()
            example.ParseFromString(string_record)
            corr2d_list.append           (np.array(example.features.feature['corr2d'].float_list.value, dtype=np.float32))
    #        target_disparity_list.append(np.array(example.features.feature['target_disparity'].float_list.value[0], dtype=np.float32))
            target_disparity_list.append (np.array(example.features.feature['target_disparity'].float_list.value, dtype=np.float32))
            gt_ds_list.append            (np.array(example.features.feature['gt_ds'].float_list.value, dtype= np.float32))
            pass
        corr2d=            np.array(corr2d_list)
        target_disparity = np.array(target_disparity_list)
        gt_ds =            np.array(gt_ds_list)
        try:
            os.makedirs(os.path.dirname(file_corr2d))
        except:
            pass     

        np.save(file_corr2d,           corr2d)
        np.save(file_target_disparity, target_disparity)
        np.save(file_gt_ds,            gt_ds)
        
    return corr2d, target_disparity, gt_ds   

#from http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
        'corr2d':           tf.FixedLenFeature([FEATURES_PER_TILE],tf.float32), #string),
        'target_disparity': tf.FixedLenFeature([1],   tf.float32), #.string),
        'gt_ds':            tf.FixedLenFeature([2],  tf.float32)  #.string)
        })
    corr2d =           features['corr2d'] # tf.decode_raw(features['corr2d'], tf.float32)
    target_disparity = features['target_disparity'] # tf.decode_raw(features['target_disparity'], tf.float32)
    gt_ds =            tf.cast(features['gt_ds'], tf.float32) # tf.decode_raw(features['gt_ds'], tf.float32)
    in_features = tf.concat([corr2d,target_disparity],0)
    # still some nan-s in correlation data?
#    in_features_clean = tf.where(tf.is_nan(in_features), tf.zeros_like(in_features), in_features)     
#    corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features_clean, target_disparity, gt_ds],
    corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features, target_disparity, gt_ds],
                                                 batch_size=1000, # 2,
                                                 capacity=30,
                                                 num_threads=2,
                                                 min_after_dequeue=10)
    return corr2d_out, target_disparity_out, gt_ds_out
#http://adventuresinmachinelearning.com/introduction-tensorflow-queuing/
def add_margins(npa,radius, val = np.nan):
    npa_ext = np.empty((npa.shape[0]+2*radius, npa.shape[1]+2*radius, npa.shape[2]), dtype = npa.dtype)
    npa_ext[radius:radius + npa.shape[0],radius:radius + npa.shape[1]] = npa
    npa_ext[0:radius,:,:] = val  
    npa_ext[radius + npa.shape[0]:,:,:] = val  
    npa_ext[:,0:radius,:] = val  
    npa_ext[:, radius + npa.shape[1]:,:] = val
    return npa_ext   

def add_neibs(npa_ext,radius):
    height = npa_ext.shape[0]-2*radius
    width =  npa_ext.shape[1]-2*radius
    side = 2 * radius + 1
    size = side * side
    npa_neib = np.empty((height,  width, side, side, npa_ext.shape[2]), dtype = npa_ext.dtype)
    for dy in range (side):
        for dx in range (side):
            npa_neib[:,:,dy, dx,:]= npa_ext[dy:dy+height, dx:dx+width]
    return npa_neib.reshape(height, width, -1)    
    
def extend_img_to_clusters(datasets_img,radius):
    side = 2 * radius + 1
    size = side * side
    width =  324
    if len(datasets_img) ==0:
        return
    num_tiles = datasets_img[0]['corr2d'].shape[0]
    height = num_tiles // width 
    for rec in datasets_img:
        rec['corr2d'] =           add_neibs(add_margins(rec['corr2d'].reshape((height,width,-1)), radius, np.nan), radius).reshape((num_tiles,-1)) 
        rec['target_disparity'] = add_neibs(add_margins(rec['target_disparity'].reshape((height,width,-1)), radius, np.nan), radius).reshape((num_tiles,-1)) 
        rec['gt_ds'] =            add_neibs(add_margins(rec['gt_ds'].reshape((height,width,-1)), radius, np.nan), radius).reshape((num_tiles,-1))
        pass



def reformat_to_clusters(datasets_data):
    cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
# Reformat input data
    for rec in datasets_data:
        rec['corr2d'] =           rec['corr2d'].reshape(          (rec['corr2d'].shape[0]//cluster_size,           rec['corr2d'].shape[1] * cluster_size)) 
        rec['target_disparity'] = rec['target_disparity'].reshape((rec['target_disparity'].shape[0]//cluster_size, rec['target_disparity'].shape[1] * cluster_size)) 
        rec['gt_ds'] =            rec['gt_ds'].reshape(           (rec['gt_ds'].shape[0]//cluster_size,            rec['gt_ds'].shape[1] * cluster_size))

def replace_nan(datasets_data):
    cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
# Reformat input data
    for rec in datasets_data:
        np.nan_to_num(rec['corr2d'], copy = False) 
        np.nan_to_num(rec['target_disparity'], copy = False) 
        np.nan_to_num(rec['gt_ds'], copy = False)



def zip_lvar_hvar(datasets_lvar_data, datasets_hvar_data, del_src = True):
#    cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
# Reformat input data

    datasets_data = []
#    for rec1, rec2 in zip(datasets_lvar_data, datasets_hvar_data):
    for nrec in range(len(datasets_lvar_data)):
        rec1 = datasets_lvar_data[nrec]
        rec2 = datasets_hvar_data[nrec]
        
        rec = {'corr2d':           np.empty((rec1['corr2d'].shape[0]*2,rec1['corr2d'].shape[1]),dtype=np.float32),
               'target_disparity': np.empty((rec1['target_disparity'].shape[0]*2,rec1['target_disparity'].shape[1]),dtype=np.float32),
               'gt_ds':            np.empty((rec1['gt_ds'].shape[0]*2,rec1['gt_ds'].shape[1]),dtype=np.float32)}

        rec['corr2d'][0::2] =           rec1['corr2d'] 
        rec['corr2d'][1::2] =           rec2['corr2d'] 
        
        rec['target_disparity'][0::2] = rec1['target_disparity'] 
        rec['target_disparity'][1::2] = rec2['target_disparity'] 

        rec['gt_ds'][0::2] =            rec1['gt_ds'] 
        rec['gt_ds'][1::2] =            rec2['gt_ds']
#        if del_src:
#            rec1['corr2d'] = None
#            rec1['target_disparity'] = None
#            rec1['gt_ds'] = None
#            rec2['corr2d'] = None
#            rec2['target_disparity'] = None
#            rec2['gt_ds'] = None
        if del_src:
            datasets_lvar_data[nrec] = None
            datasets_hvar_data[nrec] = None
        datasets_data.append(rec)
    return datasets_data    
         

# list of dictionaries  
def reduce_tile_size(datasets_data, num_tile_layers, reduced_tile_side):
    if (not datasets_data is None) and (len (datasets_data) > 0): 
        tsz = (datasets_data[0]['corr2d'].shape[1])// num_tile_layers # 81 # list index out of range
        tss = int(np.sqrt(tsz)+0.5)
        offs = (tss - reduced_tile_side) // 2
        for rec in datasets_data:
            rec['corr2d'] =  (rec['corr2d'].reshape((-1, num_tile_layers,  tss, tss))
                                 [..., offs:offs+reduced_tile_side, offs:offs+reduced_tile_side].
                                 reshape(-1,num_tile_layers*reduced_tile_side*reduced_tile_side))

def eval_results(rslt_path, absolute,
                 min_disp =    -0.1, #minimal GT disparity
                 max_disp =    20.0, # maximal GT disparity
                 max_ofst_target = 1.0,
                 max_ofst_result = 1.0,
                 str_pow =      2.0):
#    for min_disparity, max_disparity, max_offset_target, max_offset_result, strength_pow in [
    variants = [[         -0.1,         5.0,              0.5,            0.5,          1.0],           
                [         -0.1,         5.0,              0.5,            0.5,          2.0],
                [         -0.1,         5.0,              0.2,            0.2,          1.0],
                [         -0.1,         5.0,              0.2,            0.2,          2.0],
                [         -0.1,        20.0,              0.5,            0.5,          1.0],           
                [         -0.1,        20.0,              0.5,            0.5,          2.0],
                [         -0.1,        20.0,              0.2,            0.2,          1.0],
                [         -0.1,        20.0,              0.2,            0.2,          2.0],
                [         -0.1,        20.0,              1.0,            1.0,          1.0],
                [min_disp, max_disp, max_ofst_target, max_ofst_result, str_pow]]
    

    rslt = np.load(result_file)
    not_nan  =  ~np.isnan(rslt[...,0])
    not_nan &=  ~np.isnan(rslt[...,1])
    not_nan &=  ~np.isnan(rslt[...,2])
    not_nan &=  ~np.isnan(rslt[...,3])
    if  not absolute:
        rslt[...,0] +=  rslt[...,1]
    nn_disparity =     np.nan_to_num(rslt[...,0], copy = False)
    target_disparity = np.nan_to_num(rslt[...,1], copy = False)
    gt_disparity =     np.nan_to_num(rslt[...,2], copy = False)
    gt_strength =      np.nan_to_num(rslt[...,3], copy = False)
    rslt = []
    for min_disparity, max_disparity, max_offset_target, max_offset_result, strength_pow in variants:
        good_tiles = not_nan.copy();
        good_tiles &= (gt_disparity >= min_disparity)
        good_tiles &= (gt_disparity <= max_disparity)
        good_tiles &= (target_disparity != gt_disparity)
        good_tiles &= (np.abs(target_disparity - gt_disparity) <= max_offset_target)
        good_tiles &= (np.abs(target_disparity - nn_disparity) <= max_offset_result)
        gt_w =  gt_strength * good_tiles
        gt_w = np.power(gt_w,strength_pow)
        sw = gt_w.sum() 
        diff0 = target_disparity - gt_disparity
        diff1 = nn_disparity -     gt_disparity
        diff0_2w = gt_w*diff0*diff0
        diff1_2w = gt_w*diff1*diff1
        rms0 = np.sqrt(diff0_2w.sum()/sw) 
        rms1 = np.sqrt(diff1_2w.sum()/sw)
        print ("%7.3f<disp<%7.3f, offs_tgt<%5.2f, offs_rslt<%5.2f pwr=%05.3f, rms0=%7.4f, rms1=%7.4f (gain=%7.4f) num good tiles = %5d"%(
            min_disparity, max_disparity, max_offset_target,  max_offset_result, strength_pow, rms0, rms1, rms0/rms1, good_tiles.sum() ))
        rslt.append([rms0,rms1])
    return rslt 
    
                         

"""
Start of the main code
"""
"""
try:
    train_filenameTFR =  sys.argv[1]
except IndexError:
    train_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_00.tfrecords"
try:
    test_filenameTFR =  sys.argv[2]
except IndexError:
    test_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/test.tfrecords"
#FILES_PER_SCENE
train_filenameTFR1 = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_01.tfrecords"
"""
files_img =        ['/home/eyesis/x3d_data/data_sets/tf_data_3x3b/img/1527257933_150165-v04.tfrecords']
#result_file =       '/home/eyesis/x3d_data/data_sets/tf_data_3x3b/rslt/1527257933_150165-v04R-M0-4.npy'
result_file =       '/home/eyesis/x3d_data/data_sets/tf_data_3x3b/rslt/1527257933_150165-v04'+SUFFIX+'.npy'

files_train_lvar = ["/home/eyesis/x3d_data/data_sets/tf_data_rand2/train000_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train001_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train002_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train003_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train004_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train005_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train006_R1_LE_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train007_R1_LE_1.5.tfrecords",
                    ]
files_train_hvar = ["/home/eyesis/x3d_data/data_sets/tf_data_rand2/train000_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train001_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train002_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train003_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train004_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train005_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train006_R1_GT_1.5.tfrecords",
                    "/home/eyesis/x3d_data/data_sets/tf_data_rand2/train007_R1_GT_1.5.tfrecords",
]
#files_train_hvar = []
#file_test_lvar=     "/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
file_test_lvar=     "/home/eyesis/x3d_data/data_sets/tf_data_rand2/testTEST_R1_LE_1.5.tfrecords"
file_test_hvar=     "/home/eyesis/x3d_data/data_sets/tf_data_rand2/testTEST_R1_GT_1.5.tfrecords" # None # "/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-002_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
#file_test_hvar=  None
weight_hvar = 0.13
weight_lvar = 1.0 - weight_hvar 


import tensorflow as tf
import tensorflow.contrib.slim as slim


try:
    eval_results(result_file, ABSOLUTE_DISPARITY)
#exit(0)
except:
    pass

datasets_img = []
for fpath in files_img:
    print_time("Importing test image data from "+fpath, end="")
    corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
    datasets_img.append(       {"corr2d":corr2d,
                                "target_disparity":target_disparity,
                                "gt_ds":gt_ds})
    print_time("  Done")
gtruth =   datasets_img[0]['gt_ds'].copy()
t_disp =   datasets_img[0]['target_disparity'].reshape([-1,1]).copy()
extend_img_to_clusters(datasets_img, radius = CLUSTER_RADIUS)
#reformat_to_clusters(datasets_img) already this format   
replace_nan(datasets_img)
pass
pass


datasets_train_lvar = []
for fpath in files_train_lvar:
    print_time("Importing train data (low variance) from "+fpath, end="")
    corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
    datasets_train_lvar.append({"corr2d":corr2d,
                                "target_disparity":target_disparity,
                                "gt_ds":gt_ds})
    print_time("  Done")
datasets_train_hvar = []
for fpath in files_train_hvar:
    print_time("Importing train data (high variance) from "+fpath, end="")
    corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
    datasets_train_hvar.append({"corr2d":corr2d,
                                "target_disparity":target_disparity,
                                "gt_ds":gt_ds})
    print_time("  Done")
if (file_test_lvar):
    print_time("Importing test data (low variance) from "+fpath, end="")
    corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(file_test_lvar)
    dataset_test_lvar = {"corr2d":corr2d,
                           "target_disparity":target_disparity,
                           "gt_ds":gt_ds}
    print_time("  Done")
if (file_test_hvar):
    print_time("Importing test data (high variance) from "+fpath, end="")
    corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(file_test_hvar)
    dataset_test_hvar = {"corr2d":corr2d,
                           "target_disparity":target_disparity,
                           "gt_ds":gt_ds}
    print_time("  Done")
#CLUSTER_RADIUS
cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
center_tile_index = 2 * CLUSTER_RADIUS * (CLUSTER_RADIUS + 1)
# Reformat input data
if FILE_TILE_SIDE > TILE_SIDE:
    print_time("Reducing correlation tile size from %d to %d"%(FILE_TILE_SIDE, TILE_SIDE), end="")
    reduce_tile_size(datasets_train_lvar, TILE_LAYERS, TILE_SIDE)
    reduce_tile_size(datasets_train_hvar, TILE_LAYERS, TILE_SIDE)
    if (file_test_lvar):
        reduce_tile_size([dataset_test_lvar], TILE_LAYERS, TILE_SIDE)
    if (file_test_hvar):
        reduce_tile_size([dataset_test_hvar], TILE_LAYERS, TILE_SIDE)
    print_time("  Done")
pass
pass
print_time("Reshaping train data (low variance)", end="")
reformat_to_clusters(datasets_train_lvar)
print_time("  Done")
print_time("Reshaping train data (high variance)", end="")
reformat_to_clusters(datasets_train_hvar)
print_time("  Done")
if (file_test_lvar):
    print_time("Reshaping test data (low variance)", end="")
    reformat_to_clusters([dataset_test_lvar])
    print_time("  Done")
if (file_test_hvar):    
    print_time("Reshaping test data (high variance)", end="")
    reformat_to_clusters([dataset_test_hvar])
    print_time("  Done")
pass    

"""
datasets_train_lvar & datasets_train_hvar ( that will increase batch size and placeholders twice
test has to have even original, batches will not zip - just use two batches for one big one
"""




if ZIP_LHVAR:
    datasets_train = zip_lvar_hvar(datasets_train_lvar, datasets_train_hvar)
    pass
else:
    #Alternate lvar/hvar
    datasets_train = []
    datasets_weights_train = []
    for indx in range(max(len(datasets_train_lvar),len(datasets_train_hvar))):
        if (indx < len(datasets_train_lvar)):
            datasets_train.append(datasets_train_lvar[indx])
            datasets_weights_train.append(weight_lvar)
        if (indx < len(datasets_train_hvar)):
            datasets_train.append(datasets_train_hvar[indx])
            datasets_weights_train.append(weight_hvar)

datasets_test = []
datasets_weights_test = []
if (file_test_lvar):
    datasets_test.append(dataset_test_lvar)
    datasets_weights_test.append(weight_lvar)
if (file_test_hvar):
    datasets_test.append(dataset_test_hvar)
    datasets_weights_test.append(weight_hvar)

    
corr2d_train_placeholder =           tf.placeholder(datasets_train[0]['corr2d'].dtype,           (None,FEATURES_PER_TILE * cluster_size)) # corr2d_train.shape)
target_disparity_train_placeholder = tf.placeholder(datasets_train[0]['target_disparity'].dtype, (None,1 *   cluster_size))  #target_disparity_train.shape)
gt_ds_train_placeholder =            tf.placeholder(datasets_train[0]['gt_ds'].dtype,            (None,2 *   cluster_size)) #gt_ds_train.shape)

dataset_tt = tf.data.Dataset.from_tensor_slices({
    "corr2d":corr2d_train_placeholder,
    "target_disparity": target_disparity_train_placeholder,
    "gt_ds": gt_ds_train_placeholder})


#dataset_train_size = len(corr2d_train)

#dataset_train_size = len(datasets_train_lvar[0]['corr2d'])
dataset_train_size = len(datasets_train[0]['corr2d'])
dataset_train_size //= BATCH_SIZE
dataset_test_size = len(dataset_test_lvar['corr2d'])
dataset_test_size //= BATCH_SIZE
dataset_img_size = len(datasets_img[0]['corr2d'])
dataset_img_size //= BATCH_SIZE

#print_time("dataset_tt.output_types "+str(dataset_train.output_types)+", dataset_train.output_shapes "+str(dataset_train.output_shapes)+", number of elements="+str(dataset_train_size))
dataset_tt = dataset_tt.batch(BATCH_SIZE)
dataset_tt = dataset_tt.prefetch(BATCH_SIZE)
iterator_tt = dataset_tt.make_initializable_iterator()
next_element_tt = iterator_tt.get_next()
#print("dataset_tt.output_types "+str(dataset_tt.output_types)+", dataset_tt.output_shapes "+str(dataset_tt.output_shapes)+", number of elements="+str(dataset_train_size))


"""
iterator_test =  dataset_test.make_initializable_iterator()
next_element_test =  iterator_test.get_next()
"""
#https://www.tensorflow.org/versions/r1.5/programmers_guide/datasets

result_dir = './attic/result_neibs_'+     SUFFIX+'/'
checkpoint_dir = './attic/result_neibs_'+ SUFFIX+'/'
save_freq = 500

def lrelu(x):
    return tf.maximum(x*0.2,x)
#    return tf.nn.relu(x)

def sym_inputs8(inp):
    """
    get input vector [?:4*9*9+1] (last being target_disparity) and reorder for horizontal flip,
    vertical flip and transpose (8 variants, mode + 1 - hor, +2 - vert, +4 - transpose)
    return same lengh, reordered
    """
    with tf.name_scope("sym_inputs8"):
        td =           inp[:,-1:] # tf.reshape(inp,[-1], name = "td")[-1]
        inp_corr =     tf.reshape(inp[:,:-1],[-1,4,TILE_SIDE,TILE_SIDE], name = "inp_corr")
        inp_corr_h =   tf.stack([-inp_corr  [:,0,:,-1::-1], inp_corr  [:,1,:,-1::-1], -inp_corr  [:,3,:,-1::-1], -inp_corr  [:,2,:,-1::-1]], axis=1, name = "inp_corr_h")
        inp_corr_v =   tf.stack([ inp_corr  [:,0,-1::-1,:],-inp_corr  [:,1,-1::-1,:],  inp_corr  [:,3,-1::-1,:],  inp_corr  [:,2,-1::-1,:]], axis=1, name = "inp_corr_v")
        inp_corr_hv =  tf.stack([ inp_corr_h[:,0,-1::-1,:],-inp_corr_h[:,1,-1::-1,:],  inp_corr_h[:,3,-1::-1,:],  inp_corr_h[:,2,-1::-1,:]], axis=1, name = "inp_corr_hv")
        inp_corr_t =   tf.stack([tf.transpose(inp_corr   [:,1], perm=[0,2,1]),
                                 tf.transpose(inp_corr   [:,0], perm=[0,2,1]),
                                 tf.transpose(inp_corr   [:,2], perm=[0,2,1]),
                                -tf.transpose(inp_corr   [:,3], perm=[0,2,1])], axis=1, name = "inp_corr_t")
        inp_corr_ht =  tf.stack([tf.transpose(inp_corr_h [:,1], perm=[0,2,1]),
                                 tf.transpose(inp_corr_h [:,0], perm=[0,2,1]),
                                 tf.transpose(inp_corr_h [:,2], perm=[0,2,1]),
                                -tf.transpose(inp_corr_h [:,3], perm=[0,2,1])], axis=1, name = "inp_corr_ht")
        inp_corr_vt =  tf.stack([tf.transpose(inp_corr_v [:,1], perm=[0,2,1]),
                                 tf.transpose(inp_corr_v [:,0], perm=[0,2,1]),
                                 tf.transpose(inp_corr_v [:,2], perm=[0,2,1]),
                                -tf.transpose(inp_corr_v [:,3], perm=[0,2,1])], axis=1, name = "inp_corr_vt")
        inp_corr_hvt = tf.stack([tf.transpose(inp_corr_hv[:,1], perm=[0,2,1]),
                                 tf.transpose(inp_corr_hv[:,0], perm=[0,2,1]),
                                 tf.transpose(inp_corr_hv[:,2], perm=[0,2,1]),
                                -tf.transpose(inp_corr_hv[:,3], perm=[0,2,1])], axis=1, name = "inp_corr_hvt")
#        return td, [inp_corr, inp_corr_h, inp_corr_v, inp_corr_hv, inp_corr_t, inp_corr_ht, inp_corr_vt, inp_corr_hvt]
        """
        return [tf.concat([tf.reshape(inp_corr,    [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr"),
                tf.concat([tf.reshape(inp_corr_h,  [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_h"),
                tf.concat([tf.reshape(inp_corr_v,  [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_v"),
                tf.concat([tf.reshape(inp_corr_hv, [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_hv"),
                tf.concat([tf.reshape(inp_corr_t,  [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_t"),
                tf.concat([tf.reshape(inp_corr_ht, [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_ht"),
                tf.concat([tf.reshape(inp_corr_vt, [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_vt"),
                tf.concat([tf.reshape(inp_corr_hvt,[inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_hvt")]
        """
        cl = 4 * TILE_SIDE * TILE_SIDE
        return [tf.concat([tf.reshape(inp_corr,    [-1,cl]),td], axis=1,name = "out_corr"),
                tf.concat([tf.reshape(inp_corr_h,  [-1,cl]),td], axis=1,name = "out_corr_h"),
                tf.concat([tf.reshape(inp_corr_v,  [-1,cl]),td], axis=1,name = "out_corr_v"),
                tf.concat([tf.reshape(inp_corr_hv, [-1,cl]),td], axis=1,name = "out_corr_hv"),
                tf.concat([tf.reshape(inp_corr_t,  [-1,cl]),td], axis=1,name = "out_corr_t"),
                tf.concat([tf.reshape(inp_corr_ht, [-1,cl]),td], axis=1,name = "out_corr_ht"),
                tf.concat([tf.reshape(inp_corr_vt, [-1,cl]),td], axis=1,name = "out_corr_vt"),
                tf.concat([tf.reshape(inp_corr_hvt,[-1,cl]),td], axis=1,name = "out_corr_hvt")]
#                           inp_corr_h, inp_corr_v, inp_corr_hv, inp_corr_t, inp_corr_ht, inp_corr_vt, inp_corr_hvt]
    

def network_sub(input, layout, reuse, sym8 = False):
    last_indx = None;
    fc = []
    for i, num_outs in enumerate (layout):
        if num_outs:
           if fc:
               inp = fc[-1]
               fc.append(slim.fully_connected(inp,    num_outs, activation_fn=lrelu, scope='g_fc_sub'+str(i), reuse = reuse))
           else:
               inp = input
               if sym8:
                   inp8 = sym_inputs8(inp)
                   num_non_sum = num_outs %  len(inp8) # if number of first layer outputs is not multiple of 8
                   num_sym8 =    num_outs // len(inp8) # number of symmetrical groups
                   fc_sym = []
                   for j in range (len(inp8)): # ==8
                       fc_sym.append(slim.fully_connected(inp8[j],    num_sym8, activation_fn=lrelu, scope='g_fc_sub'+str(i),     reuse = reuse | (j > 0)))
                   if num_non_sum > 0:
                       fc_sym.append(slim.fully_connected(inp,     num_non_sum, activation_fn=lrelu, scope='g_fc_sub'+str(i)+"r", reuse = reuse))    
                   fc.append(tf.concat(fc_sym, 1, name='sym_input_layer'))
               else:
                   fc.append(slim.fully_connected(inp,    num_outs, activation_fn=lrelu, scope='g_fc_sub'+str(i), reuse = reuse))
           
    return fc[-1]

def network_inter(input, layout):
    last_indx = None;
    fc = []
    for i, num_outs in enumerate (layout):
        if num_outs:
           if fc:
               inp = fc[-1]
           else:
               inp = input
           fc.append(slim.fully_connected(inp,    num_outs, activation_fn=lrelu, scope='g_fc_inter'+str(i)))
    if USE_CONFIDENCE:
        fc_out  = slim.fully_connected(fc[-1],     2, activation_fn=lrelu,scope='g_fc_inter_out')
    else:     
        fc_out  = slim.fully_connected(fc[-1],     1, activation_fn=None,scope='g_fc_inter_out')
        #If using residual disparity, split last layer into 2 or remove activation and add rectifier to confidence only  
    return fc_out

def network_siam(input, # now [?:9,325]
                 layout1, 
                 layout2,
                 sym8 =        False,
                 only_tile =   None): # just for debugging - feed only data from the center sub-network
    with tf.name_scope("Siam_net"):
        num_legs =  input.shape[1] # == 9
        inter_list = []
        reuse = False
        for i in range (num_legs):
            if (only_tile is None) or (i == only_tile):
                inter_list.append(network_sub(input[:,i,:],
                                          layout= layout1,
                                          reuse= reuse,
                                          sym8 = sym8))
                reuse = True
        inter_tensor = tf.concat(inter_list, 1, name='inter_tensor')
        return  network_inter (inter_tensor, layout2)   
#corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[None,cluster_size,FEATURES_PER_TILE]) , tf.reshape(next_element_tt['target_disparity'], [None,cluster_size, 1])],2)

def debug_gt_variance(
        indx,        # This tile index (0..8)
        center_indx, # center tile index
        gt_ds_batch # [?:9:2]
        ):
    with tf.name_scope("Debug_GT_Variance"):
        tf_num_tiles =       tf.shape(gt_ds_batch)[0]
        d_gt_this =   tf.reshape(gt_ds_batch[:,2 * indx],[-1],                     name = "d_this")
        d_gt_center = tf.reshape(gt_ds_batch[:,2 * center_indx],[-1],              name = "d_center")
        d_gt_diff =   tf.subtract(d_gt_this, d_gt_center,                          name = "d_diff")
        d_gt_diff2 =  tf.multiply(d_gt_diff, d_gt_diff,                            name = "d_diff2")
        d_gt_var =    tf.reduce_mean(d_gt_diff2,                                   name = "d_gt_var")
        return  d_gt_var
    
    
def batchLoss(out_batch,                   # [batch_size,(1..2)] tf_result
              target_disparity_batch,      # [batch_size]        tf placeholder
              gt_ds_batch,                 # [batch_size,2]      tf placeholder
              absolute_disparity =     True, #when false there should be no activation on disparity output ! 
              use_confidence =         True, 
              lambda_conf_avg =        0.01,
              lambda_conf_pwr =        0.1,
              conf_pwr =               2.0,
              gt_conf_offset =         0.08,
              gt_conf_pwr =            1.0,
              error2_offset =          0.0025, # (0.05^2)
              disp_wmin =              1.0,    # minimal disparity to apply weight boosting for small disparities
              disp_wmax =              8.0,    # maximal disparity to apply weight boosting for small disparities
              use_out =                False):  # use calculated disparity for disparity weight boosting (False - use target disparity)
               
    with tf.name_scope("BatchLoss"):
        """
        Here confidence should be after relU. Disparity - may be also if absolute, but no activation if output is residual disparity
        """
        tf_lambda_conf_avg = tf.constant(lambda_conf_avg, dtype=tf.float32, name="tf_lambda_conf_avg")
        tf_lambda_conf_pwr = tf.constant(lambda_conf_pwr, dtype=tf.float32, name="tf_lambda_conf_pwr")
        tf_conf_pwr =        tf.constant(conf_pwr,        dtype=tf.float32, name="tf_conf_pwr")
        tf_gt_conf_offset =  tf.constant(gt_conf_offset,  dtype=tf.float32, name="tf_gt_conf_offset")
        tf_gt_conf_pwr =     tf.constant(gt_conf_pwr,     dtype=tf.float32, name="tf_gt_conf_pwr")
        tf_num_tiles =       tf.shape(gt_ds_batch)[0]
        tf_0f =              tf.constant(0.0,             dtype=tf.float32, name="tf_0f")
        tf_1f =              tf.constant(1.0,             dtype=tf.float32, name="tf_1f")
        tf_maxw =            tf.constant(1.0,             dtype=tf.float32, name="tf_maxw")
        if gt_conf_pwr == 0:
            w = tf.ones((out_batch.shape[0]), dtype=tf.float32,name="w_ones")
        else:
    #        w_slice = tf.slice(gt_ds_batch,[0,1],[-1,1],              name = "w_gt_slice")
            w_slice = tf.reshape(gt_ds_batch[:,1],[-1],                     name = "w_gt_slice")
            
            w_sub =   tf.subtract      (w_slice, tf_gt_conf_offset,         name = "w_sub")
    #        w_clip =  tf.clip_by_value(w_sub, tf_0f,tf_maxw,              name = "w_clip")
            w_clip =  tf.maximum(w_sub, tf_0f,                              name = "w_clip")
            if gt_conf_pwr == 1.0:
                w = w_clip
            else:
                w=tf.pow(w_clip, tf_gt_conf_pwr, name = "w_pow")
    
        if use_confidence:
            tf_num_tilesf =      tf.cast(tf_num_tiles, dtype=tf.float32,     name="tf_num_tilesf")
    #        conf_slice =     tf.slice(out_batch,[0,1],[-1,1],                name = "conf_slice")
            conf_slice =     tf.reshape(out_batch[:,1],[-1],                 name = "conf_slice")
            conf_sum =       tf.reduce_sum(conf_slice,                       name = "conf_sum")
            conf_avg =       tf.divide(conf_sum, tf_num_tilesf,              name = "conf_avg")
            conf_avg1 =      tf.subtract(conf_avg, tf_1f,                    name = "conf_avg1")
            conf_avg2 =      tf.square(conf_avg1,                            name = "conf_avg2")
            cost2 =          tf.multiply (conf_avg2, tf_lambda_conf_avg,     name = "cost2")
    
            iconf_avg =      tf.divide(tf_1f, conf_avg,                      name = "iconf_avg")
            nconf =          tf.multiply (conf_slice, iconf_avg,             name = "nconf") #normalized confidence
            nconf_pwr =      tf.pow(nconf, conf_pwr,                         name = "nconf_pwr")
            nconf_pwr_sum =  tf.reduce_sum(nconf_pwr,                        name = "nconf_pwr_sum")
            nconf_pwr_offs = tf.subtract(nconf_pwr_sum, tf_1f,               name = "nconf_pwr_offs")
            cost3 =          tf.multiply (conf_avg2, nconf_pwr_offs,         name = "cost3")
            w_all =          tf.multiply (w, nconf,                          name = "w_all")
        else:
            w_all = w
#            cost2 = 0.0
#            cost3 = 0.0    
        # normalize weights
        w_sum =              tf.reduce_sum(w_all,                            name = "w_sum")
        iw_sum =             tf.divide(tf_1f, w_sum,                         name = "iw_sum")
        w_norm =             tf.multiply (w_all, iw_sum,                     name = "w_norm")
        
        disp_slice =         tf.reshape(out_batch[:,0],[-1],                 name = "disp_slice")
        d_gt_slice =         tf.reshape(gt_ds_batch[:,0],[-1],               name = "d_gt_slice")
        
        td_flat =        tf.reshape(target_disparity_batch,[-1],         name = "td_flat")
        if absolute_disparity:
            adisp =          disp_slice
        else:
            adisp =          tf.add(disp_slice, td_flat,                     name = "adisp")
        out_diff =           tf.subtract(adisp, d_gt_slice,                  name = "out_diff")
            
            
        out_diff2 =          tf.square(out_diff,                             name = "out_diff2")
        out_wdiff2 =         tf.multiply (out_diff2, w_norm,                 name = "out_wdiff2")
        
        cost1 =              tf.reduce_sum(out_wdiff2,                       name = "cost1")
        
        out_diff2_offset =   tf.subtract(out_diff2, error2_offset,           name = "out_diff2_offset")
        out_diff2_biased =   tf.maximum(out_diff2_offset, 0.0,               name = "out_diff2_biased")
        
        # calculate disparity-based weight boost
        if use_out:
            dispw =          tf.clip_by_value(adisp, disp_wmin, disp_wmax,   name = "dispw")
        else:
            dispw =          tf.clip_by_value(td_flat, disp_wmin, disp_wmax, name = "dispw")
        dispw_boost =        tf.divide(disp_wmax, dispw,                     name = "dispw_boost")
        dispw_comp =         tf.multiply (dispw_boost, w_norm,               name = "dispw_comp") #HERE??
#        dispw_comp =         tf.multiply (w_norm, w_norm,               name = "dispw_comp") #HERE??
        dispw_sum =          tf.reduce_sum(dispw_comp,                       name = "dispw_sum")
        idispw_sum =         tf.divide(tf_1f, dispw_sum,                     name = "idispw_sum")
        dispw_norm =         tf.multiply (dispw_comp, idispw_sum,            name = "dispw_norm")
        
        out_diff2_wbiased =  tf.multiply(out_diff2_biased, dispw_norm,       name = "out_diff2_wbiased")
#        out_diff2_wbiased =  tf.multiply(out_diff2_biased, w_norm,       name = "out_diff2_wbiased")
        cost1b =             tf.reduce_sum(out_diff2_wbiased,                name = "cost1b")
        
        if use_confidence:
            cost12 =         tf.add(cost1b, cost2,                           name = "cost12")
            cost123 =        tf.add(cost12, cost3,                           name = "cost123")    
            
            return cost123, disp_slice, d_gt_slice, out_diff,out_diff2, w_norm, out_wdiff2, cost1
        else:
            return cost1b,  disp_slice, d_gt_slice, out_diff,out_diff2, w_norm, out_wdiff2, cost1
    
#In GPU - reformat inputs

##corr2d325 = tf.concat([next_element_tt['corr2d'], next_element_tt['target_disparity']],1)

#Should have shape (?,9,325)
corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,FEATURES_PER_TILE]) , tf.reshape(next_element_tt['target_disparity'], [-1,cluster_size, 1])],2)

#corr2d9x324 = tf.reshape( next_element_tt['corr2d'],          [-1, cluster_size, FEATURES_PER_TILE], name = 'corr2d9x324')
#td9x1 =       tf.reshape(next_element_tt['target_disparity'], [-1, cluster_size, 1],    name = 'td9x1')
#corr2d9x325 = tf.concat([corr2d9x324 , td9x1],2, name = 'corr2d9x325')


#    in_features = tf.concat([corr2d,target_disparity],0)

#out =       network_fc_simple(input=corr2d325, arch = NET_ARCH1)
out =       network_siam(input=corr2d9x325,
                         layout1 =   NN_LAYOUT1, 
                         layout2 =   NN_LAYOUT2,
                         sym8 =      SYM8_SUB,
                         only_tile = ONLY_TILE) #Remove/put None for normal operation
#            w_slice = tf.reshape(gt_ds_batch[:,1],[-1],                     name = "w_gt_slice")

# Extract target disparity and GT corresponding to the center tile (reshape - just to name)
#target_disparity_batch_center = tf.reshape(next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1] , [-1,1],  name = "target_center")
#gt_ds_batch_center =            tf.reshape(next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * center_tile_index+1],    [-1,2],  name = "gt_ds_center")

G_loss, _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdiff2, _cost1 = batchLoss(out_batch =         out,        # [batch_size,(1..2)] tf_result
              target_disparity_batch=  next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1], # target_disparity_batch_center, # next_element_tt['target_disparity'], # target_disparity, ### target_d,   # [batch_size]        tf placeholder
              gt_ds_batch =            next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * (center_tile_index +1)],  # gt_ds_batch_center, ## next_element_tt['gt_ds'], # gt_ds, ### gt,         # [batch_size,2]      tf placeholder
              absolute_disparity =     ABSOLUTE_DISPARITY,
              use_confidence =         USE_CONFIDENCE, # True, 
              lambda_conf_avg =        0.01,
              lambda_conf_pwr =        0.1,
              conf_pwr =               2.0,
              gt_conf_offset =         0.08,
              gt_conf_pwr =            2.0,
              error2_offset =          0.0025, # (0.05^2)
              disp_wmin =              1.0,    # minimal disparity to apply weight boosting for small disparities
              disp_wmax =              8.0,    # maximal disparity to apply weight boosting for small disparities
              use_out =                False)  # use calculated disparity for disparity weight boosting (False - use target disparity)
              
#debug
GT_variance =  debug_gt_variance(indx = 0,        # This tile index (0..8)
                                 center_indx = 4, # center tile index
                                 gt_ds_batch = next_element_tt['gt_ds'])# [?:18]
              
tf_ph_G_loss = tf.placeholder(tf.float32,shape=None,name='G_loss_avg')
tf_ph_sq_diff = tf.placeholder(tf.float32,shape=None,name='sq_diff_avg')
tf_gtvar_diff = tf.placeholder(tf.float32,shape=None,name='gtvar_diff')
tf_img_test0 = tf.placeholder(tf.float32,shape=None,name='img_test0')
tf_img_test9 = tf.placeholder(tf.float32,shape=None,name='img_test9')
with tf.name_scope('sample'):
    tf.summary.scalar("G_loss",       G_loss)
    tf.summary.scalar("sq_diff",      _cost1)
    tf.summary.scalar("gtvar_diff",   GT_variance)
    
with tf.name_scope('epoch_average'):
    tf.summary.scalar("G_loss_epoch", tf_ph_G_loss)
    tf.summary.scalar("sq_diff_epoch",tf_ph_sq_diff)
    tf.summary.scalar("gtvar_diff",   tf_gtvar_diff)
    
    tf.summary.scalar("img_test0",   tf_img_test0)
    tf.summary.scalar("img_test9",   tf_img_test9)

t_vars=tf.trainable_variables()
lr=tf.placeholder(tf.float32)
G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss)

saver=tf.train.Saver()

ROOT_PATH  = './attic/nn_ds_neibs3_graph'+SUFFIX+"/"
TRAIN_PATH =  ROOT_PATH + 'train'
TEST_PATH  =  ROOT_PATH + 'test'
TEST_PATH1  = ROOT_PATH + 'test1'

# CLEAN OLD STAFF
shutil.rmtree(TRAIN_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH1, ignore_errors=True)

WIDTH=324
HEIGHT=242

with tf.Session()  as sess:
    
    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())
    
    merged = tf.summary.merge_all()
    train_writer =    tf.summary.FileWriter(TRAIN_PATH, sess.graph)
    test_writer  =    tf.summary.FileWriter(TEST_PATH, sess.graph)
    test_writer1  =   tf.summary.FileWriter(TEST_PATH1, sess.graph)
    loss_train_hist=  np.empty(dataset_train_size, dtype=np.float32)
    loss_test_hist=   np.empty(dataset_test_size, dtype=np.float32)
    loss2_train_hist= np.empty(dataset_train_size, dtype=np.float32)
    loss2_test_hist=  np.empty(dataset_test_size, dtype=np.float32)
    train_avg = 0.0     
    train2_avg = 0.0
    test_avg = 0.0     
    test2_avg = 0.0
    gtvar_train_hist=  np.empty(dataset_train_size, dtype=np.float32)
    gtvar_test_hist=   np.empty(dataset_test_size, dtype=np.float32)
    gtvar_train = 0.0
    gtvar_test = 0.0
    gtvar_train_avg = 0.0
    gtvar_test_avg =  0.0
    img_gain_test0 =  1.0
    img_gain_test9 =  1.0
    
#    num_train_variants = len(files_train_lvar)
    num_train_variants = len(datasets_train)
    for epoch in range (EPOCHS_TO_RUN):
#        file_index = (epoch // 20) % 2 
        file_index = epoch  % num_train_variants
        if   epoch >=600:
            learning_rate = LR600
        elif epoch >=400:
            learning_rate = LR400
        elif epoch >=200:
            learning_rate = LR200
        elif epoch >=100:
            learning_rate = LR100
        else:
            learning_rate = LR
#        learning_rate = [LR,LR100][epoch >=100] 

        sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder:           datasets_train[file_index]['corr2d'],
                                                     target_disparity_train_placeholder: datasets_train[file_index]['target_disparity'],
                                                     gt_ds_train_placeholder:            datasets_train[file_index]['gt_ds']})
        
#        disp_out=  np.empty((dataset_train_size * BATCH_SIZE), dtype=np.float32)
        for i in range(dataset_train_size):
            try:
#                train_summary,_, G_loss_trained,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out  = sess.run(
                train_summary,_, G_loss_trained,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance  = sess.run(
                    [   merged,
                        G_opt,
                        G_loss,
                        out,
                        _disp_slice,
                        _d_gt_slice,
                        _out_diff,
                        _out_diff2,
                        _w_norm,
                        _out_wdiff2,
                        _cost1,
                        GT_variance
#                        corr2d325,
                    ],
                    feed_dict={lr:learning_rate,tf_ph_G_loss:train_avg, tf_ph_sq_diff:train2_avg, tf_gtvar_diff:gtvar_train_avg, tf_img_test0:img_gain_test0, tf_img_test9:img_gain_test9}) # previous value of *_avg
                
                # save all for now as a test
                #train_writer.add_summary(summary, i)
                #train_writer.add_summary(train_summary, i)
#                disp_out[BATCH_SIZE*i:BATCH_SIZE*(i+1)] = output.flatten()
                loss_train_hist[i] =  G_loss_trained
                loss2_train_hist[i] = out_cost1
                gtvar_train_hist[i] = gt_variance
            except tf.errors.OutOfRangeError:
                print("train done at step %d"%(i))
                break
        train_avg =       np.average(loss_train_hist).astype(np.float32)     
        train2_avg =      np.average(loss2_train_hist).astype(np.float32)
        gtvar_train_avg = np.average(gtvar_train_hist).astype(np.float32)
        
        test_summaries = [0.0]*len(datasets_test)
        for ntest,dataset_test in enumerate(datasets_test):
            sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder:      dataset_test['corr2d'],
                                                    target_disparity_train_placeholder: dataset_test['target_disparity'],
                                                    gt_ds_train_placeholder:            dataset_test['gt_ds']})
            
            for i in range(dataset_test_size):
                try:
#                    test_summary, G_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance = sess.run(
                    test_summaries[ntest], G_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance = sess.run(
                        [merged,
                         G_loss,
                         out,
                         _disp_slice,
                         _d_gt_slice,
                         _out_diff,
                         _out_diff2,
                         _w_norm,
                         _out_wdiff2,
                         _cost1,
                         GT_variance
                         ],
                            feed_dict={lr:learning_rate,tf_ph_G_loss:test_avg, tf_ph_sq_diff:test2_avg, tf_gtvar_diff:gtvar_test_avg, tf_img_test0:img_gain_test0, tf_img_test9:img_gain_test9})  # previous value of *_avg
                    loss_test_hist[i] =  G_loss_tested
                    loss2_test_hist[i] = out_cost1
                    gtvar_test_hist[i] = gt_variance
                except tf.errors.OutOfRangeError:
                    print("test done at step %d"%(i))
                    break
                    
                test_avg =  np.average(loss_test_hist).astype(np.float32)     
                test2_avg = np.average(loss2_test_hist).astype(np.float32)
                gtvar_test_avg = np.average(gtvar_test_hist).astype(np.float32)
             
#        _,_=sess.run([tf_ph_G_loss,tf_ph_sq_diff],feed_dict={tf_ph_G_loss:test_avg, tf_ph_sq_diff:test2_avg})
        
        train_writer.add_summary(train_summary, epoch)
        test_writer.add_summary(test_summaries[0], epoch)
        test_writer1.add_summary(test_summaries[1], epoch)
        
        print_time("%d:%d -> %f %f (%f %f) dbg:%f %f"%(epoch,i,train_avg, test_avg,train2_avg, test2_avg, gtvar_train_avg, gtvar_test_avg))
        if ((epoch + 1) == EPOCHS_TO_RUN) or (((epoch + 1) % EPOCHS_FULL_TEST) == 0):
###################################################
# Read the full image
################################################### 
            test_summaries_img = [0.0]*len(datasets_img)
        #    disp_out=  np.empty((dataset_img_size * BATCH_SIZE), dtype=np.float32)
            disp_out=  np.empty((WIDTH*HEIGHT), dtype=np.float32)
            
            for ntest,dataset_img in enumerate(datasets_img):
                sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder:      dataset_img['corr2d'],
                                                        target_disparity_train_placeholder: dataset_img['target_disparity'],
                                                        gt_ds_train_placeholder:            dataset_img['gt_ds']})
        #        start_offs=0
                for start_offs in range(0,disp_out.shape[0],BATCH_SIZE):
                    end_offs = min(start_offs+BATCH_SIZE,disp_out.shape[0])
                    
                    try:
                        test_summaries_img[ntest], G_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance = sess.run(
                            [merged,
                             G_loss,
                             out,
                             _disp_slice,
                             _d_gt_slice,
                             _out_diff,
                             _out_diff2,
                             _w_norm,
                             _out_wdiff2,
                             _cost1,
                             GT_variance
                             ],
                                feed_dict={lr:learning_rate,tf_ph_G_loss:test_avg, tf_ph_sq_diff:test2_avg, tf_gtvar_diff:gtvar_test_avg, tf_img_test0:img_gain_test0, tf_img_test9:img_gain_test9})  # previous value of *_avg
        #                loss_test_hist[i] =  G_loss_tested
        #                loss2_test_hist[i] = out_cost1
        #                gtvar_test_hist[i] = gt_variance
                    except tf.errors.OutOfRangeError:
                        print("test done at step %d"%(i))
                        break
                    try:
        #                disp_out[BATCH_SIZE*i:BATCH_SIZE*(i+1)] = output.flatten()
                        disp_out[start_offs:end_offs] = output.flatten()
                    except ValueError:
                        print("dataset_img_size= %d, i=%d, output.shape[0]=%d "%(dataset_img_size, i, output.shape[0]))
                        break;    
                    pass
                try:
                    os.makedirs(os.path.dirname(result_file))
                except:
                    pass     
                
                rslt = np.concatenate([disp_out.reshape(-1,1), t_disp, gtruth],1)
                np.save(result_file,           rslt.reshape(HEIGHT,WIDTH,-1))
                
                rslt = eval_results(result_file, ABSOLUTE_DISPARITY)
                img_gain_test0 = rslt[0][0]/rslt[0][1]   
                img_gain_test9 = rslt[9][0]/rslt[9][1]   
     
     # Close writers
    train_writer.close()
    test_writer.close()
    test_writer1.close()
#reports error: Exception ignored in: <bound method BaseSession.__del__ of <tensorflow.python.client.session.Session object at 0x7efc5f720ef0>> if there is no print before exit()

print("All done")
exit (0)