imagej_tiff.py 11.2 KB
Newer Older
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
1 2
#!/usr/bin/env python3

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
'''
/**
 * @file imagej_tiff.py
 * @brief open multi layer tiff files, display layers and parse meta data
 * @par <b>License</b>:
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
'''

__copyright__ = "Copyright 2018, Elphel, Inc."
__license__   = "GPL-3.0+"
__email__     = "oleg@elphel.com"

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
27 28 29 30 31 32 33 34 35
'''
  Notes:
    - Pillow 5.1.0. Version 4.1.1 throws error (VelueError):
      ~$ (sudo) pip3 install Pillow --upgrade
      ~$ python3
      >>> import PIL
      >>> PIL.PILLOW_VERSION
      '5.1.0'
'''
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
36

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
37 38 39 40 41
from PIL import Image
import xml.etree.ElementTree as ET
import numpy as np
import matplotlib.pyplot as plt

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
import sys
import xml.dom.minidom as minidom

import time

#http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python
class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[38;5;214m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    BOLDWHITE = '\033[1;37m'
    UNDERLINE = '\033[4m'

# reshape to tiles
def get_tile_images(image, width=8, height=8):
  _nrows, _ncols, depth = image.shape
  _size = image.size
  _strides = image.strides

  nrows, _m = divmod(_nrows, height)
  ncols, _n = divmod(_ncols, width)
  if _m != 0 or _n != 0:
    return None

  return np.lib.stride_tricks.as_strided(
    np.ravel(image),
    shape=(nrows, ncols, height, width, depth),
    strides=(height * _strides[0], width * _strides[1], *_strides),
    writeable=False
  )

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
# TiffFile has no len exception
#import imageio

#from libtiff import TIFF
'''
Description:
    Reads a tiff files with multiple layers that were saved by imagej
Methods:
    .getstack(items=[])
        returns np.array, layers are stacked along depth - think of RGB channels
        @items - if empty = all, if not - items[i] - can be layer index or layer's label name
    .channel(index)
        returns np.array of a single layer
    .show_images(items=[])
        @items - if empty = all, if not - items[i] - can be layer index or layer's label name
    .show_image(index)
Examples:
#1

'''
class imagej_tiff:

  # imagej stores labels lengths in this tag
  __TIFF_TAG_LABELS_LENGTHS = 50838
  # imagej stores labels conents in this tag
  __TIFF_TAG_LABELS_STRINGS = 50839

  # init
  def __init__(self,filename):
    # file name
    self.fname = filename
    tif = Image.open(filename)
    # total number of layers in tiff
    self.nimages = tif.n_frames
    # labels array
    self.labels = []
    # infos will contain xml data Elphel stores in some of tiff files
    self.infos = []
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
115 116 117 118 119 120
    # dictionary from decoded infos[0] xml data
    self.props = {}

    # bits per sample, type int
    self.bpp = tif.tag[258][0]

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
121 122 123 124 125 126 127 128 129 130
    self.__split_labels(tif.n_frames,tif.tag)
    self.__parse_info()
    # image layers stacked along depth - (think RGB)
    self.image = []

    # fill self.image
    for i in range(self.nimages):
      tif.seek(i)
      a = np.array(tif)
      a = np.reshape(a,(a.shape[0],a.shape[1],1))
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
131

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
132
      #a = a[:,:,np.newaxis]
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
133 134 135 136 137 138 139 140 141 142 143 144 145

      # scale for 8-bits
      # exclude layer named 'other'
      if self.bpp==8:
        _min = self.data_min
        _max = self.data_max
        _MIN = 1
        _MAX = 255
        a = a.astype(float)
        if self.labels[i]!='other':
          a[a==0]=np.nan
          a = (_max-_min)*(a-_MIN)/(_MAX-_MIN)+_min

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
146 147 148 149 150 151 152 153 154 155
      # init
      if i==0:
        self.image = a
      # stack along depth (think of RGB channels)
      else:
        self.image = np.append(self.image,a,axis=2)

    # init done, close the image
    tif.close()

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  # label == tiff layer name
  def getvalues(self,label=""):
    l = self.getstack([label],shape_as_tiles=True)
    res = np.empty((l.shape[0],l.shape[1],3))

    for i in range(res.shape[0]):
      for j in range(res.shape[1]):
        # 9x9 -> 81x1
        m = np.ravel(l[i,j])
        if self.bpp==32:
          res[i,j,0] = m[0]
          res[i,j,1] = m[2]
          res[i,j,2] = m[4]
        elif self.bpp==8:
          res[i,j,0] = ((m[0]-128)*256+m[1])/128
          res[i,j,1] = ((m[2]-128)*256+m[3])/128
          res[i,j,2] = (m[4]*256+m[5])/65536.0
        else:
          res[i,j,0] = np.nan
          res[i,j,1] = np.nan
          res[i,j,2] = np.nan

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
178 179 180 181 182 183 184 185
    # NaNize
    a = res[:,:,0]
    a[a==-256] = np.nan
    b = res[:,:,1]
    b[b==-256] = np.nan
    c = res[:,:,2]
    c[c==0] = np.nan

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
186 187 188
    return res


Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
189 190
  # get ordered stack of images by provided items
  # by index or label name
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
191
  def getstack(self,items=[],shape_as_tiles=False):
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
192 193
    a = ()
    if len(items)==0:
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
194
      b = self.image
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
195 196 197 198 199 200 201 202
    else:
      for i in items:
        if type(i)==int:
          a += (self.image[:,:,i],)
        elif type(i)==str:
          j = self.labels.index(i)
          a += (self.image[:,:,j],)
      # stack along depth
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
203 204 205 206
      b = np.stack(a,axis=2)

    if shape_as_tiles:
      b = get_tile_images(b,self.tileW,self.tileH)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
207

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
208
    return b
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

  # get np.array of a channel
  # * do not handle out of bounds
  def channel(self,index):
      return self.image[:,:,index]


  # display images by index or label
  def show_images(self,items=[]):

    # show listed only
    if len(items)>0:
      for i in items:
        if type(i)==int:
          self.show_image(i)
        elif type(i)==str:
          j = self.labels.index(i)
          self.show_image(j)
    # show all
    else:
      for i in range(self.nimages):
        self.show_image(i)


  # display single image
  def show_image(self,index):

    # display using matplotlib

    t = self.image[:,:,index]
    mytitle = "("+str(index+1)+" of "+str(self.nimages)+") "+self.labels[index]
    fig = plt.figure()
    fig.canvas.set_window_title(self.fname+": "+mytitle)
    fig.suptitle(mytitle)
    #plt.imshow(t,cmap=plt.get_cmap('gray'))
    plt.imshow(t)
    plt.colorbar()

    # display using Pillow - need to scale

    # remove NaNs - no need
    #t[np.isnan(t)]=np.nanmin(t)
    # scale to [min/max*255:255] range
    #t = (1-(t-np.nanmax(t))/(t-np.nanmin(t)))*255
    #tmp_im = Image.fromarray(t)
    #tmp_im.show()

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
256
  # puts etrees in infoss
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
257 258 259 260 261 262 263 264
  def __parse_info(self):

    infos = []
    for info in self.infos:
      infos.append(ET.fromstring(info))

    self.infos = infos

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    # specifics
    # properties dictionary
    pd = {}

    for child in infos[0]:
      #print(child.tag+"::::::"+child.text)
      pd[child.tag] = child.text

    self.props = pd

    # tiles are squares
    self.tileW = int(self.props['tileWidth'])
    self.tileH = int(self.props['tileWidth'])
    self.data_min = float(self.props['data_min'])
    self.data_max = float(self.props['data_max'])
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

  # makes arrays of labels (strings) and unparsed xml infos
  def __split_labels(self,n,tag):

    # list
    tag_lens = tag[self.__TIFF_TAG_LABELS_LENGTHS]
    # string
    tag_labels = tag[self.__TIFF_TAG_LABELS_STRINGS].decode()
    # remove 1st element: it's something like IJIJlabl..
    tag_labels = tag_labels[tag_lens[0]:]
    tag_lens = tag_lens[1:]

    # the last ones are images labels
    # normally the difference is expected to be 0 or 1
    skip = len(tag_lens) - n

    self.labels = []
    self.infos = []
    for l in tag_lens:
      string = tag_labels[0:l].replace('\x00','')
      if skip==0:
        self.labels.append(string)
      else:
        self.infos.append(string)
        skip -= 1
      tag_labels = tag_labels[l:]

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
307

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
308 309
#MAIN
if __name__ == "__main__":
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
310 311 312 313 314 315 316

  try:
    fname = sys.argv[1]
  except IndexError:
    fname = "1521849031_093189-ML_DATA-32B-O-OFFS1.0.tiff"
    fname = "1521849031_093189-ML_DATA-08B-O-OFFS1.0.tiff"

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
317
  #fname = "1521849031_093189-DISP_MAP-D0.0-46.tif"
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
318 319 320 321
  #fname = "1526905735_662795-ML_DATA-08B-AIOTD-OFFS2.0.tiff"
  #fname = "test.tiff"

  print(bcolors.BOLDWHITE+"time: "+str(time.time())+bcolors.ENDC)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
322 323 324

  ijt = imagej_tiff(fname)

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
325 326
  print(bcolors.BOLDWHITE+"time: "+str(time.time())+bcolors.ENDC)

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
327 328
  print("TIFF stack labels: "+str(ijt.labels))
  #print(ijt.infos)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
329 330 331 332 333

  rough_string = ET.tostring(ijt.infos[0], "utf-8")
  reparsed = minidom.parseString(rough_string)
  print(reparsed.toprettyxml(indent="\t"))

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
334
  #print(ijt.props)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
335 336 337 338 339 340

  # needed properties:
  print("Tiles shape: "+str(ijt.tileW)+"x"+str(ijt.tileH))
  print("Data min: "+str(ijt.data_min))
  print("Data max: "+str(ijt.data_max))

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
341 342
  print(ijt.image.shape)

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356
  # layer order: ['diagm-pair', 'diago-pair', 'hor-pairs', 'vert-pairs', 'other']
  # now split this into tiles:

  #tiles = get_tile_images(ijt.image,ijt.tileW,ijt.tileH)
  #print(tiles.shape)

  tiles = ijt.getstack(['diagm-pair','diago-pair','hor-pairs','vert-pairs'],shape_as_tiles=True)
  print("Stack of images shape: "+str(tiles.shape))

  print(bcolors.BOLDWHITE+"time: "+str(time.time())+bcolors.ENDC)
  # provide layer name
  values = ijt.getvalues(label='other')
  print("Stack of values shape: "+str(values.shape))

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
357 358 359 360 361 362 363 364
  # each tile's disparity:

  fig = plt.figure()
  fig.suptitle("Estimated Disparity")
  plt.imshow(values[:,:,0])
  plt.colorbar()

  fig = plt.figure()
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
365
  fig.suptitle("Esitmated+Residual disparity")
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
366 367 368 369 370 371 372 373
  plt.imshow(values[:,:,1])
  plt.colorbar()

  fig = plt.figure()
  fig.suptitle("Residual disparity confidence")
  plt.imshow(values[:,:,2])
  plt.colorbar()

Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  print(bcolors.BOLDWHITE+"time: "+str(time.time())+bcolors.ENDC)
  #print(values)

  #print(value_tiles[131,162].flatten())
  #print(np.ravel(value_tiles[131,162]))

  #values = np.empty((vt.shape[0],vt.shape[1],3))

  #for i in range(values.shape[0]):
  #  for j in range(values.shape[1]):
  #    values[i,j,0] = get_v1()


  #print(tiles[121,160,:,:,0].shape)
  #_nrows = int(ijt.image.shape[0] / ijt.tileH)
  #_ncols = int(ijt.image.shape[1] / ijt.tileW)
  #_nrows = 32
  #_ncols = 32
  #print(str(_nrows)+" "+str(_ncols))
  #fig, ax = plt.subplots(nrows=_nrows, ncols=_ncols)
  #for i in range(_nrows):
  #  for j in range(_ncols):
  #    ax[i,j].imshow(tiles[i+100,j,:,:,0])
  #    ax[i,j].set_axis_off()

  #for i in range(5):
  #  fig = plt.figure()
  #  plt.imshow(tiles[121,160,:,:,i])
  #  plt.colorbar()

  #ijt.show_images(['other'])
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
405 406

  #ijt.show_images([0,3])
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
407
  #ijt.show_images(['X-corr','Y-corr'])
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
408 409
  #ijt.show_images(['R-vign',3])

410
  ijt.show_images()
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
411
  plt.show()
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
412 413 414 415




Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

  # Examples

  # 1: get default stack of images
  #a = ijt.getstack()
  #print(a.shape)

  # 2: get defined ordered stack of images by tiff image index or by label name
  #a = ijt.getstack([1,2,'X-corr'])
  #print(a.shape)

  # 3: will throw an error if there's no such label
  #a = ijt.getstack([1,2,'Unknown'])
  #print(a.shape)

  # 4: will throw an error if index is out of bounds
  #a = ijt.getstack([1,2,'X-corr'])
  #print(a.shape)

  # 5: dev excercise
  #a = np.array([[1,2],[3,4]])
  #b = np.array([[5,6],[7,8]])
  #c = np.array([[10,11],[12,13]])

  #print("test1:")
  #ka = (a,b,c)
  #d = np.stack(ka,axis=2)

  #print(d)

  #print("test2:")
  #e = np.stack((d[:,:,1],d[:,:,0]),axis=2)
  #print(e)