qcstereo_functions.py 27 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#!/usr/bin/env python3
__copyright__ = "Copyright 2018, Elphel, Inc."
__license__   = "GPL-3.0+"
__email__     = "andrey@elphel.com"

#from numpy import float64
import os
import numpy as np
import tensorflow as tf
import xml.etree.ElementTree as ET
import time
import imagej_tiffwriter
Andrey Filippov's avatar
Andrey Filippov committed
13 14
TIME_LAST = 0
TIME_START = 0
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[38;5;214m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    BOLDWHITE = '\033[1;37m'
    UNDERLINE = '\033[4m'
def print_time(txt="",end="\n"):
    global TIME_LAST
    t = time.time()
    if txt:
        txt +=" "
    print(("%s"+bcolors.BOLDWHITE+"at %.4fs (+%.4fs)"+bcolors.ENDC)%(txt,t-TIME_START,t-TIME_LAST), end = end, flush=True)
    TIME_LAST = t
def parseXmlConfig(conf_file, root_dir):
    tree = ET.parse(conf_file)
    root = tree.getroot()
    parameters = {}
    for p in root.find('parameters'):
        parameters[p.tag]=eval(p.text.strip())
    globals    
    dirs={}
    for p in root.find('directories'):
        dirs[p.tag]=eval(p.text.strip())
        if not os.path.isabs(dirs[p.tag]):
            dirs[p.tag] = os.path.join(root_dir, dirs[p.tag])
    files={}
    for p in root.find('files'):
        files[p.tag]=eval(p.text.strip())
#    globals().update(parameters)
    return parameters, dirs, files



def prepareFiles(dirs, files, suffix):
    #MAX_FILES_PER_GROUP
    for i, path in enumerate(files['train_lvar']):
        files['train_lvar'][i]=os.path.join(dirs['train_lvar'], path)
        
    for i, path in enumerate(files['train_hvar']):
        files['train_hvar'][i]=os.path.join(dirs['train_hvar'], path)
    
    for i, path in enumerate(files['train_lvar1']):
        files['train_lvar1'][i]=os.path.join(dirs['train_lvar1'], path)
        
    for i, path in enumerate(files['train_hvar1']):
        files['train_hvar1'][i]=os.path.join(dirs['train_hvar1'], path)
        
    for i, path in enumerate(files['test_lvar']):
        files['test_lvar'][i]=os.path.join(dirs['test_lvar'], path)
        
    for i, path in enumerate(files['test_hvar']):
        files['test_hvar'][i]=os.path.join(dirs['test_hvar'], path)
    result_files=[]
    for i, path in enumerate(files['images']):
        result_files.append(os.path.join(dirs['result'], path+"_"+suffix+'.npy'))
    files['result'] = result_files 
    files['train'] = [files['train_lvar'],files['train_hvar'], files['train_lvar1'], files['train_hvar1']]
    # should be after result files
    for i, path in enumerate(files['images']):
        files['images'][i] =      os.path.join(dirs['images'],    path+'.tfrecords')

def readTFRewcordsEpoch(train_filename):
    if not  '.tfrecords' in train_filename:
        train_filename += '.tfrecords'
    npy_dir_name = "npy"
    dirname = os.path.dirname(train_filename) 
    npy_dir = os.path.join(dirname, npy_dir_name)
    filebasename, file_extension = os.path.splitext(train_filename)
    filebasename = os.path.basename(filebasename)
    file_corr2d =           os.path.join(npy_dir,filebasename + '_corr2d.npy')
    file_target_disparity = os.path.join(npy_dir,filebasename + '_target_disparity.npy')
    file_gt_ds =            os.path.join(npy_dir,filebasename + '_gt_ds.npy')
    if (os.path.exists(file_corr2d) and
        os.path.exists(file_target_disparity) and
        os.path.exists(file_gt_ds)):
        corr2d=            np.load (file_corr2d)
        target_disparity = np.load(file_target_disparity)
        gt_ds =            np.load(file_gt_ds)
        pass
    else:     
        record_iterator = tf.python_io.tf_record_iterator(path=train_filename)
        corr2d_list=[]
        target_disparity_list=[]
        gt_ds_list = []
        for string_record in record_iterator:
            example = tf.train.Example()
            example.ParseFromString(string_record)
            corr2d_list.append           (np.array(example.features.feature['corr2d'].float_list.value, dtype=np.float32))
            target_disparity_list.append (np.array(example.features.feature['target_disparity'].float_list.value, dtype=np.float32))
            gt_ds_list.append            (np.array(example.features.feature['gt_ds'].float_list.value, dtype= np.float32))
            pass
        corr2d=            np.array(corr2d_list)
        target_disparity = np.array(target_disparity_list)
        gt_ds =            np.array(gt_ds_list)
        try:
            os.makedirs(os.path.dirname(file_corr2d))
        except:
            pass     

        np.save(file_corr2d,           corr2d)
        np.save(file_target_disparity, target_disparity)
        np.save(file_gt_ds,            gt_ds)
    return corr2d, target_disparity, gt_ds

def getMoreFiles(fpaths,rslt, cluster_radius, hor_flip, tile_layers, tile_side):
    for fpath in fpaths:
        corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
        dataset = {"corr2d":           corr2d,
                     "target_disparity": target_disparity,
                     "gt_ds":            gt_ds}
        """
        if FILE_TILE_SIDE > TILE_SIDE:
            reduce_tile_size([dataset],   TILE_LAYERS, TILE_SIDE)
        """
        reformat_to_clusters([dataset], cluster_radius)
        if hor_flip:
            if np.random.randint(2):
                print_time("Performing horizontal flip", end=" ")
                flip_horizontal([dataset], cluster_radius, tile_layers, tile_side)
                print_time("Done")
        rslt.append(dataset)

#from http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
Andrey Filippov's avatar
Andrey Filippov committed
143
def read_and_decode(filename_queue, featrures_per_tile):
144 145 146 147 148 149 150
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
Andrey Filippov's avatar
Andrey Filippov committed
151
        'corr2d':           tf.FixedLenFeature([featrures_per_tile],tf.float32), #string),
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        'target_disparity': tf.FixedLenFeature([1],   tf.float32), #.string),
        'gt_ds':            tf.FixedLenFeature([2],  tf.float32)  #.string)
        })
    corr2d =           features['corr2d'] # tf.decode_raw(features['corr2d'], tf.float32)
    target_disparity = features['target_disparity'] # tf.decode_raw(features['target_disparity'], tf.float32)
    gt_ds =            tf.cast(features['gt_ds'], tf.float32) # tf.decode_raw(features['gt_ds'], tf.float32)
    in_features = tf.concat([corr2d,target_disparity],0)
    # still some nan-s in correlation data?
#    in_features_clean = tf.where(tf.is_nan(in_features), tf.zeros_like(in_features), in_features)     
#    corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features_clean, target_disparity, gt_ds],
    corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features, target_disparity, gt_ds],
                                                 batch_size=1000, # 2,
                                                 capacity=30,
                                                 num_threads=2,
                                                 min_after_dequeue=10)
    return corr2d_out, target_disparity_out, gt_ds_out
#http://adventuresinmachinelearning.com/introduction-tensorflow-queuing/
def add_margins(npa,radius, val = np.nan):
    npa_ext = np.empty((npa.shape[0]+2*radius, npa.shape[1]+2*radius, npa.shape[2]), dtype = npa.dtype)
    npa_ext[radius:radius + npa.shape[0],radius:radius + npa.shape[1]] = npa
    npa_ext[0:radius,:,:] = val  
    npa_ext[radius + npa.shape[0]:,:,:] = val  
    npa_ext[:,0:radius,:] = val  
    npa_ext[:, radius + npa.shape[1]:,:] = val
    return npa_ext   

def add_neibs(npa_ext,radius):
    height = npa_ext.shape[0]-2*radius
    width =  npa_ext.shape[1]-2*radius
    side = 2 * radius + 1
    size = side * side
    npa_neib = np.empty((height,  width, side, side, npa_ext.shape[2]), dtype = npa_ext.dtype)
    for dy in range (side):
        for dx in range (side):
            npa_neib[:,:,dy, dx,:]= npa_ext[dy:dy+height, dx:dx+width]
    return npa_neib.reshape(height, width, -1)    
  
def extend_img_to_clusters(datasets_img,radius, width): #  = 324):
    side = 2 * radius + 1
    size = side * side
    if len(datasets_img) ==0:
        return
    num_tiles = datasets_img[0]['corr2d'].shape[0]
    height = num_tiles // width 
    for rec in datasets_img:
        if not rec is None:
            rec['corr2d'] =           add_neibs(add_margins(rec['corr2d'].reshape((height,width,-1)), radius, np.nan), radius).reshape((num_tiles,-1)) 
            rec['target_disparity'] = add_neibs(add_margins(rec['target_disparity'].reshape((height,width,-1)), radius, np.nan), radius).reshape((num_tiles,-1)) 
            rec['gt_ds'] =            add_neibs(add_margins(rec['gt_ds'].reshape((height,width,-1)), radius, np.nan), radius).reshape((num_tiles,-1))
            pass

def reformat_to_clusters(datasets_data, cluster_radius):
    cluster_size = (2 * cluster_radius + 1) * (2 * cluster_radius + 1)
# Reformat input data
    for rec in datasets_data:
        rec['corr2d'] =           rec['corr2d'].reshape(          (rec['corr2d'].shape[0]//cluster_size,           rec['corr2d'].shape[1] * cluster_size)) 
        rec['target_disparity'] = rec['target_disparity'].reshape((rec['target_disparity'].shape[0]//cluster_size, rec['target_disparity'].shape[1] * cluster_size)) 
        rec['gt_ds'] =            rec['gt_ds'].reshape(           (rec['gt_ds'].shape[0]//cluster_size,            rec['gt_ds'].shape[1] * cluster_size))

def flip_horizontal(datasets_data, cluster_radius, tile_layers, tile_side):
    cluster_side = 2 * cluster_radius + 1
    cluster_size = cluster_side * cluster_side
    """
TILE_LAYERS =        4
TILE_SIDE =          9 # 7
TILE_SIZE =         TILE_SIDE* TILE_SIDE # == 81
    """
    for rec in datasets_data:
        corr2d =           rec['corr2d'].reshape(          (rec['corr2d'].shape[0],  cluster_side, cluster_side, tile_layers, tile_side, tile_side))
        target_disparity = rec['target_disparity'].reshape((rec['corr2d'].shape[0],  cluster_side, cluster_side, -1))
        gt_ds =            rec['gt_ds'].reshape(           (rec['corr2d'].shape[0],  cluster_side, cluster_side, -1))
        """
        Horizontal flip of tiles
        """
        corr2d = corr2d[:,:,::-1,...]
        target_disparity = target_disparity[:,:,::-1,...]
        gt_ds = gt_ds[:,:,::-1,...]
        
        corr2d[:,:,:,0,:,:] = corr2d[:,:,:,0,::-1,:] # flip vertical layer0   (hor) 
        corr2d[:,:,:,1,:,:] = corr2d[:,:,:,1,:,::-1]  # flip horizontal layer1 (vert)
        corr2d_2 =            corr2d[:,:,:,3,::-1,:].copy() # flip vertical layer3   (diago)
        corr2d[:,:,:,3,:,:] = corr2d[:,:,:,2,::-1,:] # flip vertical layer2   (diago)
        corr2d[:,:,:,2,:,:] = corr2d_2
        
        
        rec['corr2d'] =           corr2d.reshape((corr2d.shape[0],-1)) 
        rec['target_disparity'] = target_disparity.reshape((target_disparity.shape[0],-1)) 
        rec['gt_ds'] =            gt_ds.reshape((gt_ds.shape[0],-1))

def replace_nan(datasets_data, cluster_radius):
    cluster_size = (2 * cluster_radius + 1) * (2 * cluster_radius + 1)
# Reformat input data
    for rec in datasets_data:
        if not rec is None:
            np.nan_to_num(rec['corr2d'],           copy = False) 
            np.nan_to_num(rec['target_disparity'], copy = False) 
            np.nan_to_num(rec['gt_ds'],            copy = False)

def permute_to_swaps(perm):
    pairs = []
    for i in range(len(perm)):
        w = np.where(perm == i)[0][0]
        if w != i:
            pairs.append([i,w])
            perm[w] = perm[i]
            perm[i] = i
    return pairs        
        
def shuffle_in_place(datasets_data, indx, period):
    swaps = permute_to_swaps(np.random.permutation(len(datasets_data)))
    num_entries = datasets_data[0]['corr2d'].shape[0] // period
    for swp in swaps:
        ds0 = datasets_data[swp[0]]
        ds1 = datasets_data[swp[1]]
        tmp = ds0['corr2d'][indx::period].copy() 
        ds0['corr2d'][indx::period] = ds1['corr2d'][indx::period]
        ds1['corr2d'][indx::period] = tmp

        tmp = ds0['target_disparity'][indx::period].copy() 
        ds0['target_disparity'][indx::period] = ds1['target_disparity'][indx::period]
        ds1['target_disparity'][indx::period] = tmp

        tmp = ds0['gt_ds'][indx::period].copy() 
        ds0['gt_ds'][indx::period] = ds1['gt_ds'][indx::period]
        ds1['gt_ds'][indx::period] = tmp
    
def shuffle_chunks_in_place(datasets_data, tiles_groups_per_chunk):
    """
    Improve shuffling by preserving indices inside batches (0 <->0, ... 39 <->39 for 40 tile group batches)
    """
    num_files = len(datasets_data)
    #chunks_per_file = datasets_data[0]['target_disparity']
    for nf, ds in enumerate(datasets_data):
        groups_per_file = ds['corr2d'].shape[0]
        chunks_per_file = groups_per_file//tiles_groups_per_chunk
        permut = np.random.permutation(chunks_per_file)
        ds['corr2d'] =           ds['corr2d'].          reshape((chunks_per_file,-1))[permut].reshape((groups_per_file,-1))
        ds['target_disparity'] = ds['target_disparity'].reshape((chunks_per_file,-1))[permut].reshape((groups_per_file,-1))
        ds['gt_ds'] =            ds['gt_ds'].           reshape((chunks_per_file,-1))[permut].reshape((groups_per_file,-1))

def _setFileSlot(train_next, files, max_files_per_group):
    train_next['files'] = files
    train_next['slots'] = min(train_next['files'], max_files_per_group)
     
def _nextFileSlot(train_next):
    train_next['file'] = (train_next['file'] + 1) % train_next['files'] 
    train_next['slot'] = (train_next['slot'] + 1) % train_next['slots'] 

    
def replaceNextDataset(datasets_data, new_dataset, train_next, nset,period):
    replaceDataset(datasets_data, new_dataset, nset, period, findx = train_next['slot'])
#    _nextFileSlot(train_next[nset])

        
def replaceDataset(datasets_data, new_dataset, nset, period, findx):
    """
    Replace one file in the dataset
    """
    datasets_data[findx]['corr2d']          [nset::period] =  new_dataset['corr2d'] 
    datasets_data[findx]['target_disparity'][nset::period] =  new_dataset['target_disparity'] 
    datasets_data[findx]['gt_ds']           [nset::period] =  new_dataset['gt_ds'] 
    

def zip_lvar_hvar(datasets_all_data, del_src = True):
#    cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
# Reformat input data
    num_sets_to_combine = len(datasets_all_data)
    datasets_data = []
    if num_sets_to_combine:
        for nrec in range(len(datasets_all_data[0])):
            recs = [[] for _ in range(num_sets_to_combine)]
            for nset, datasets in enumerate(datasets_all_data):
                recs[nset] = datasets[nrec]
                
            rec = {'corr2d':           np.empty((recs[0]['corr2d'].shape[0]*num_sets_to_combine,          recs[0]['corr2d'].shape[1]),dtype=np.float32),
                   'target_disparity': np.empty((recs[0]['target_disparity'].shape[0]*num_sets_to_combine,recs[0]['target_disparity'].shape[1]),dtype=np.float32),
                   'gt_ds':            np.empty((recs[0]['gt_ds'].shape[0]*num_sets_to_combine,           recs[0]['gt_ds'].shape[1]),dtype=np.float32)}
            
            for nset, reci in enumerate(recs):
                rec['corr2d']          [nset::num_sets_to_combine] =  recs[nset]['corr2d'] 
                rec['target_disparity'][nset::num_sets_to_combine] =  recs[nset]['target_disparity'] 
                rec['gt_ds']           [nset::num_sets_to_combine] =  recs[nset]['gt_ds'] 
            if del_src:
                for nset in range(num_sets_to_combine):
                    datasets_all_data[nset][nrec] = None
            datasets_data.append(rec)
    return datasets_data    
         

# list of dictionaries  
def reduce_tile_size(datasets_data, num_tile_layers, reduced_tile_side):
    if (not datasets_data is None) and (len (datasets_data) > 0): 
        tsz = (datasets_data[0]['corr2d'].shape[1])// num_tile_layers # 81 # list index out of range
        tss = int(np.sqrt(tsz)+0.5)
        offs = (tss - reduced_tile_side) // 2
        for rec in datasets_data:
            rec['corr2d'] =  (rec['corr2d'].reshape((-1, num_tile_layers,  tss, tss))
                                 [..., offs:offs+reduced_tile_side, offs:offs+reduced_tile_side].
                                 reshape(-1,num_tile_layers*reduced_tile_side*reduced_tile_side))
            
            
def initTrainTestData(
        files,
        cluster_radius,
        max_files_per_group, # shuffling buffer for files
        two_trains,
        train_next):
    datasets_train_lvar =  []
    datasets_train_hvar =  []
    datasets_train_lvar1 = []
    datasets_train_hvar1 = []
    datasets_train_all = [[],[],[],[]]
    for n_train, f_train in enumerate(files['train']):
        if len(f_train) and ((n_train<2) or two_trains):
            _setFileSlot(train_next[n_train], len(f_train), max_files_per_group)
            for i, fpath in enumerate(f_train):
                if i >= max_files_per_group:
                    break
                print_time("Importing train data "+(["low variance","high variance", "low variance1","high variance1"][n_train]) +" from "+fpath, end="")
                corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
                datasets_train_all[n_train].append({"corr2d":corr2d,
                                            "target_disparity":target_disparity,
                                            "gt_ds":gt_ds})
                _nextFileSlot(train_next[n_train])
                print_time("  Done")
    
    datasets_test_lvar = []
    for fpath in files['test_lvar']:
        print_time("Importing test data (low variance) from "+fpath, end="")
        corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
        datasets_test_lvar.append({"corr2d":corr2d,
                                    "target_disparity":target_disparity,
                                    "gt_ds":gt_ds})
        print_time("  Done")
    datasets_test_hvar = []
    for fpath in files['test_hvar']:
        print_time("Importing test data (high variance) from "+fpath, end="")
        corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(fpath)
        datasets_test_hvar.append({"corr2d":corr2d,
                                    "target_disparity":target_disparity,
                                    "gt_ds":gt_ds})
        print_time("  Done")
        
    # Reformat to 1/9/25 tile clusters
    for n_train, d_train in enumerate(datasets_train_all):
        print_time("Reshaping train data ("+(["low variance","high variance", "low variance1","high variance1"][n_train])+") ", end="")
        reformat_to_clusters(d_train, cluster_radius)
        print_time("  Done")
    
    print_time("Reshaping test data (low variance)", end="")
    reformat_to_clusters(datasets_test_lvar, cluster_radius)
    print_time("  Done")
    print_time("Reshaping test data (high variance)", end="")
    reformat_to_clusters(datasets_test_hvar, cluster_radius)
    print_time("  Done")
    pass    
    
    """
    datasets_train_lvar & datasets_train_hvar ( that will increase batch size and placeholders twice
    test has to have even original, batches will not zip - just use two batches for one big one
    """
    print_time("Zipping together datasets datasets_train_lvar and datasets_train_hvar", end="")
    datasets_train = zip_lvar_hvar(datasets_train_all, del_src = True) # no shuffle, delete src
    print_time("  Done")
    
    datasets_test = []
    for dataset_test_lvar in datasets_test_lvar:
        datasets_test.append(dataset_test_lvar)
    for dataset_test_hvar in datasets_test_hvar:
        datasets_test.append(dataset_test_hvar)
    
    return datasets_train, datasets_test, len(datasets_train_all) # 4
    
                
                
                
    
def readImageData(image_data,
                  files,
                  indx,
                  cluster_radius,
                  width,
                  replace_nans):
    if image_data[indx] is None:
        corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(files['images'][indx])
        image_data[indx] = {
            'corr2d':           corr2d,
            'target_disparity': target_disparity,
             "gt_ds":            gt_ds,
             "gtruths":          gt_ds.copy(),
             "t_disps":          target_disparity.reshape([-1,1]).copy()}
        extend_img_to_clusters(
             [image_data[indx]],
             cluster_radius,
             width)
        if replace_nans:
            replace_nan([image_data[indx]], cluster_radius)
            
    return image_data[indx]
               
def initImageData(files,
                  max_imgs,
                  cluster_radius,
                  width,
                  replace_nans):
    num_imgs = len(files['images'])
    img_data = [None] * num_imgs
    for nfile in range(min(num_imgs, max_imgs)):
        print_time("Importing test image data from "+ files['images'][nfile], end="")
        readImageData(img_data,files, nfile, cluster_radius, width, replace_nans)
        print_time("  Done")
        return img_data    
            
def evaluateAllResults(result_files, absolute_disparity, cluster_radius):
    for result_file in result_files:
        try:
            print_time("Reading resuts from "+result_file, end=" ")
            eval_results(result_file, absolute_disparity, radius=cluster_radius)
        except:
            print_time(" - does not exist")
            continue
        print_time("Done")
        print_time("Saving resuts to tiff", end=" ")
        result_npy_to_tiff(result_file, absolute_disparity, fix_nan = True)        
        print_time("Done")
    


def result_npy_to_tiff(npy_path, absolute, fix_nan, insert_deltas=True):
    
    """
    @param npy_path full path to the npy file with 4-layer data (242,324,4) - nn_disparity(offset), target_disparity, gt disparity, gt strength
           data will be written as 4-layer tiff, extension '.npy' replaced with '.tiff'
    @param absolute - True - the first layer contains absolute disparity, False - difference from target_disparity
    @param fix_nan - replace nan in target_disparity with 0 to apply offset, target_disparity will still contain nan
    """
    tiff_path = npy_path.replace('.npy','.tiff')
    data = np.load(npy_path) #(324,242,4) [nn_disp, target_disp,gt_disp, gt_conf]
Andrey Filippov's avatar
Andrey Filippov committed
490 491 492 493
    nn_out =            0
    target_disparity =  1     
    gt_disparity =      2     
    gt_strength =       3     
494 495
    if not absolute:
        if fix_nan:
Andrey Filippov's avatar
Andrey Filippov committed
496
            data[...,nn_out] +=  np.nan_to_num(data[...,1], copy=True)
497
        else:
Andrey Filippov's avatar
Andrey Filippov committed
498
            data[...,nn_out] +=  data[...,1]
499
    if insert_deltas:
Andrey Filippov's avatar
Andrey Filippov committed
500 501 502 503 504 505 506 507 508 509 510 511
        np.nan_to_num(data[...,gt_strength], copy=False)
        data = np.concatenate([data[...,0:4],data[...,0:2],data[...,0:2],data[...,4:]], axis = 2)
        data[...,6] -= data[...,gt_disparity] 
        data[...,7] -= data[...,gt_disparity]
        for l in [4,5,6,7]:
            data[...,l] = np.select([data[...,gt_strength]==0.0, data[...,gt_strength]>0.0], [np.nan,data[...,l]])
        # All other layers - mast too
        for l in range(8,data.shape[2]):
            data[...,l] = np.select([data[...,gt_strength]==0.0, data[...,gt_strength]>0.0], [np.nan,data[...,l]])
            
#        data[...,4] = np.select([data[...,3]==0.0, data[...,3]>0.0], [np.nan,data[...,4]])
#       data[...,5] = np.select([data[...,3]==0.0, data[...,3]>0.0], [np.nan,data[...,5]])
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
            
    data = data.transpose(2,0,1)
    print("Saving results to TIFF: "+tiff_path)
    imagej_tiffwriter.save(tiff_path,data[...,np.newaxis])        


def eval_results(rslt_path, absolute,
                 min_disp =       -0.1, #minimal GT disparity
                 max_disp =       20.0, # maximal GT disparity
                 max_ofst_target = 1.0,
                 max_ofst_result = 1.0,
                 str_pow =         2.0,
                 radius =          0):
#    for min_disparity, max_disparity, max_offset_target, max_offset_result, strength_pow in [
    variants = [[         -0.1,         5.0,              0.5,            0.5,          1.0],           
                [         -0.1,         5.0,              0.5,            0.5,          2.0],
                [         -0.1,         5.0,              0.2,            0.2,          1.0],
                [         -0.1,         5.0,              0.2,            0.2,          2.0],
                [         -0.1,        20.0,              0.5,            0.5,          1.0],           
                [         -0.1,        20.0,              0.5,            0.5,          2.0],
                [         -0.1,        20.0,              0.2,            0.2,          1.0],
                [         -0.1,        20.0,              0.2,            0.2,          2.0],
                [         -0.1,        20.0,              1.0,            1.0,          1.0],
                [min_disp, max_disp, max_ofst_target, max_ofst_result, str_pow]]
    

    rslt = np.load(rslt_path)
    not_nan  =  ~np.isnan(rslt[...,0])
    not_nan &=  ~np.isnan(rslt[...,1])
    not_nan &=  ~np.isnan(rslt[...,2])
    not_nan &=  ~np.isnan(rslt[...,3])
    not_nan_ext = np.zeros((rslt.shape[0] + 2*radius,rslt.shape[1] + 2 * radius),dtype=np.bool) 
    not_nan_ext[radius:-radius,radius:-radius] = not_nan
    for dy in range(2*radius+1):
        for dx in range(2*radius+1):
            not_nan_ext[dy:dy+not_nan.shape[0], dx:dx+not_nan.shape[1]] &= not_nan
    not_nan = not_nan_ext[radius:-radius,radius:-radius]         
        
    if  not absolute:
        rslt[...,0] +=  rslt[...,1]
    nn_disparity =     np.nan_to_num(rslt[...,0], copy = False)
    target_disparity = np.nan_to_num(rslt[...,1], copy = False)
    gt_disparity =     np.nan_to_num(rslt[...,2], copy = False)
    gt_strength =      np.nan_to_num(rslt[...,3], copy = False)
    rslt = []
    for min_disparity, max_disparity, max_offset_target, max_offset_result, strength_pow in variants:
        good_tiles = not_nan.copy();
        good_tiles &= (gt_disparity >= min_disparity)
        good_tiles &= (gt_disparity <= max_disparity)
        good_tiles &= (target_disparity != gt_disparity)
        good_tiles &= (np.abs(target_disparity - gt_disparity) <= max_offset_target)
        good_tiles &= (np.abs(target_disparity - nn_disparity) <= max_offset_result)
        gt_w =  gt_strength * good_tiles
        gt_w = np.power(gt_w,strength_pow)
        sw = gt_w.sum() 
        diff0 = target_disparity - gt_disparity
        diff1 = nn_disparity -     gt_disparity
        diff0_2w = gt_w*diff0*diff0
        diff1_2w = gt_w*diff1*diff1
        rms0 = np.sqrt(diff0_2w.sum()/sw) 
        rms1 = np.sqrt(diff1_2w.sum()/sw)
        print ("%7.3f<disp<%7.3f, offs_tgt<%5.2f, offs_rslt<%5.2f pwr=%05.3f, rms0=%7.4f, rms1=%7.4f (gain=%7.4f) num good tiles = %5d"%(
            min_disparity, max_disparity, max_offset_target,  max_offset_result, strength_pow, rms0, rms1, rms0/rms1, good_tiles.sum() ))
        rslt.append([rms0,rms1])
    return rslt 

def concentricSquares(radius):
    side = 2 * radius + 1
    return [[((i // side) >= var) and
             ((i // side) < (side - var)) and
             ((i % side)  >= var) and
             ((i % side)  < (side - var))  for i in range (side*side) ] for var in range(radius+1)]