nn_ds_neibs17.py 35.7 KB
Newer Older
1
#!/usr/bin/env python3
2 3 4
##from numpy import float64
##from tensorflow.contrib.losses.python.metric_learning.metric_loss_ops import npairs_loss
##from debian.deb822 import PdiffIndex
5 6 7 8 9

__copyright__ = "Copyright 2018, Elphel, Inc."
__license__   = "GPL-3.0+"
__email__     = "andrey@elphel.com"

Andrey Filippov's avatar
Andrey Filippov committed
10
#python3 nn_ds_neibs17.py /home/eyesis/x3d_data/data_sets/conf/qcstereo_conf13.xml /home/eyesis/x3d_data/data_sets
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
import os
import sys
import numpy as np
import time
import shutil
from threading import Thread
import qcstereo_network
import qcstereo_losses
import qcstereo_functions as qsf

qsf.TIME_START = time.time()
qsf.TIME_LAST  = qsf.TIME_START

IMG_WIDTH =        324 # tiles per image row
DEBUG_LEVEL= 1

try:
    conf_file =  sys.argv[1]
except IndexError:
    print("Configuration path is required as a first argument. Optional second argument specifies root directory for data files")
    exit(1)
try:
    root_dir =  sys.argv[2]
except IndexError:
    root_dir =  os.path.dirname(conf_file)
    
print ("Configuration file: " + conf_file)
38
parameters, dirs, files, _ = qsf.parseXmlConfig(conf_file, root_dir)
39 40 41 42 43
"""
Temporarily for backward compatibility
"""
if not "SLOSS_CLIP" in parameters:
    parameters['SLOSS_CLIP'] = 0.5
Andrey Filippov's avatar
Andrey Filippov committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57
    print ("Old config, setting SLOSS_CLIP=", parameters['SLOSS_CLIP'])
    
"""
Defined in config file
"""
TILE_SIDE, TILE_LAYERS, TWO_TRAINS, NET_ARCH1, NET_ARCH2 = [None]*5
ABSOLUTE_DISPARITY,SYM8_SUB, WLOSS_LAMBDA,  SLOSS_LAMBDA, SLOSS_CLIP  = [None]*5
SPREAD_CONVERGENCE, INTER_CONVERGENCE, HOR_FLIP, DISP_DIFF_CAP, DISP_DIFF_SLOPE  = [None]*5
CLUSTER_RADIUS = None
PARTIALS_WEIGHTS, MAX_IMGS_IN_MEM, MAX_FILES_PER_GROUP,  BATCH_WEIGHTS, ONLY_TILE = [None] * 5  
USE_CONFIDENCE, WBORDERS_ZERO, EPOCHS_TO_RUN, FILE_UPDATE_EPOCHS = [None] * 4
LR600,LR400,LR200,LR100,LR = [None]*5
SHUFFLE_FILES, EPOCHS_FULL_TEST, SAVE_TIFFS = [None] * 3

Andrey Filippov's avatar
Andrey Filippov committed
58
TRAIN_BUFFER_GPU, TRAIN_BUFFER_CPU = [None]*2
Andrey Filippov's avatar
Andrey Filippov committed
59

Andrey Filippov's avatar
Andrey Filippov committed
60 61 62
"""
Next gets globals from the config file
"""
63 64 65
globals().update(parameters)


Andrey Filippov's avatar
Andrey Filippov committed
66
TRAIN_BUFFER_SIZE = TRAIN_BUFFER_GPU * TRAIN_BUFFER_CPU # in merged (quad) batches
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124



#exit(0)

TILE_SIZE =         TILE_SIDE* TILE_SIDE # == 81
FEATURES_PER_TILE =  TILE_LAYERS * TILE_SIZE# == 324
BATCH_SIZE =       ([1,2][TWO_TRAINS])*2*1000//25 # == 80 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches

SUFFIX=(str(NET_ARCH1)+'-'+str(NET_ARCH2)+
       (["R","A"][ABSOLUTE_DISPARITY]) +
       (["NS","S8"][SYM8_SUB])+
       "WLAM"+str(WLOSS_LAMBDA)+
       "SLAM"+str(SLOSS_LAMBDA)+
       "SCLP"+str(SLOSS_CLIP)+
       (['_nG','_G'][SPREAD_CONVERGENCE])+
       (['_nI','_I'][INTER_CONVERGENCE]) +
       (['_nHF',"_HF"][HOR_FLIP]) +
       ('_CP'+str(DISP_DIFF_CAP)) +
       ('_S'+str(DISP_DIFF_SLOPE))
       )
NN_LAYOUTS = {0:[0,   0,   0,   32,  20,  16],
              1:[0,   0,   0,  256, 128,  64],
              2:[0, 128,  32,   32,  32,  16],
              3:[0,   0,  40,   32,  20,  16],
              4:[0,   0,   0,    0,  16,  16],
              5:[0,   0,  64,   32,  32,  16],
              6:[0,   0,  32,   16,  16,  16],
              7:[0,   0,  64,   16,  16,  16],
              8:[0,   0,   0,   64,  20,  16],
              9:[0,   0, 256,   64,  32,  16],
             10:[0, 256, 128,   64,  32,  16],
             11:[0,   0,   0,   0,   64,  32],
              }
NN_LAYOUT1 = NN_LAYOUTS[NET_ARCH1]
NN_LAYOUT2 = NN_LAYOUTS[NET_ARCH2]
USE_PARTIALS =      not PARTIALS_WEIGHTS is None # False - just a single Siamese net, True - partial outputs that use concentric squares of the first level subnets
##############################################################################
cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
center_tile_index = 2 * CLUSTER_RADIUS * (CLUSTER_RADIUS + 1)
qsf.prepareFiles(dirs, files, suffix = SUFFIX)

partials = None
partials = qsf.concentricSquares(CLUSTER_RADIUS)
PARTIALS_WEIGHTS = [1.0*pw/sum(PARTIALS_WEIGHTS) for pw in PARTIALS_WEIGHTS]
if not USE_PARTIALS:
    partials = partials[0:1]
    PARTIALS_WEIGHTS = [1.0]


import tensorflow as tf
#import tensorflow.contrib.slim as slim

qsf.evaluateAllResults(result_files = files['result'],
                       absolute_disparity = ABSOLUTE_DISPARITY,
                       cluster_radius = CLUSTER_RADIUS)

image_data = qsf.initImageData(
Andrey Filippov's avatar
Andrey Filippov committed
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                files =          files,
                max_imgs =       MAX_IMGS_IN_MEM,
                cluster_radius = CLUSTER_RADIUS,
                tile_layers =    TILE_LAYERS,
                tile_side =      TILE_SIDE,
                width =          IMG_WIDTH,
                replace_nans =   True)
    
#    return train_next, dataset_train_all, datasets_test
corr2d_len, target_disparity_len, _ = qsf.get_lengths(CLUSTER_RADIUS, TILE_LAYERS, TILE_SIDE)
 
train_next, dataset_train, datasets_test= qsf.initTrainTestData(
        files = files,
        cluster_radius =      CLUSTER_RADIUS,
        buffer_size =         TRAIN_BUFFER_SIZE * BATCH_SIZE) # number of clusters per train
##    return corr2d_len, target_disparity_len, train_next, dataset_train_merged, datasets_test
141 142

    
Andrey Filippov's avatar
Andrey Filippov committed
143 144 145
corr2d_train_placeholder =           tf.placeholder(dataset_train.dtype, (None,FEATURES_PER_TILE * cluster_size)) # corr2d_train.shape)
target_disparity_train_placeholder = tf.placeholder(dataset_train.dtype, (None,1 *   cluster_size))  #target_disparity_train.shape)
gt_ds_train_placeholder =            tf.placeholder(dataset_train.dtype, (None,2 *   cluster_size)) #gt_ds_train.shape)
146 147

dataset_tt = tf.data.Dataset.from_tensor_slices({
Andrey Filippov's avatar
Andrey Filippov committed
148
    "corr2d":           corr2d_train_placeholder,
149
    "target_disparity": target_disparity_train_placeholder,
Andrey Filippov's avatar
Andrey Filippov committed
150
    "gt_ds":            gt_ds_train_placeholder})
151 152 153 154 155

tf_batch_weights = tf.placeholder(shape=(None,), dtype=tf.float32, name = "batch_weights") # way to increase importance of the high variance clusters 
feed_batch_weights =   np.array(BATCH_WEIGHTS*(BATCH_SIZE//len(BATCH_WEIGHTS)), dtype=np.float32)
feed_batch_weight_1 =  np.array([1.0], dtype=np.float32) 

Andrey Filippov's avatar
Andrey Filippov committed
156 157 158 159 160 161 162
##dataset_train_size = len(datasets_train[0]['corr2d'])
##dataset_train_size //= BATCH_SIZE

#dataset_train_size = TRAIN_BUFFER_GPU * num_train_subs # TRAIN_BUFFER_SIZE

#dataset_test_size = len(datasets_test[0]['corr2d'])
dataset_test_size = len(datasets_test[0])
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
dataset_test_size //= BATCH_SIZE
#dataset_img_size = len(datasets_img[0]['corr2d'])
dataset_img_size = len(image_data[0]['corr2d'])
dataset_img_size //= BATCH_SIZE

dataset_tt = dataset_tt.batch(BATCH_SIZE)
dataset_tt = dataset_tt.prefetch(BATCH_SIZE)
iterator_tt = dataset_tt.make_initializable_iterator()
next_element_tt = iterator_tt.get_next()

#https://www.tensorflow.org/versions/r1.5/programmers_guide/datasets
result_dir = './attic/result_neibs_'+     SUFFIX+'/'
checkpoint_dir = './attic/result_neibs_'+ SUFFIX+'/'
save_freq = 500

def debug_gt_variance(
        indx,        # This tile index (0..8)
        center_indx, # center tile index
        gt_ds_batch # [?:9:2]
        ):
    with tf.name_scope("Debug_GT_Variance"):
Andrey Filippov's avatar
Andrey Filippov committed
184
#        tf_num_tiles =  tf.shape(gt_ds_batch)[0]
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        d_gt_this =     tf.reshape(gt_ds_batch[:,2 * indx],[-1],                     name = "d_this")
        d_gt_center =   tf.reshape(gt_ds_batch[:,2 * center_indx],[-1],              name = "d_center")
        d_gt_diff =     tf.subtract(d_gt_this, d_gt_center,                          name = "d_diff")
        d_gt_diff2 =    tf.multiply(d_gt_diff, d_gt_diff,                            name = "d_diff2")
        d_gt_var =      tf.reduce_mean(d_gt_diff2,                                   name = "d_gt_var")
        return  d_gt_var
    
#def batchLoss
        
        
target_disparity_cluster = tf.reshape(next_element_tt['target_disparity'], [-1,cluster_size, 1], name="targdisp_cluster")    
corr2d_Nx325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,FEATURES_PER_TILE], name="coor2d_cluster"),
                          target_disparity_cluster], axis=2, name = "corr2d_Nx325")
if SPREAD_CONVERGENCE:                                      
    outs, inp_weights =  qcstereo_network.networks_siam(
                                            input =             corr2d_Nx325,
                                            input_global =      target_disparity_cluster,
                                            layout1 =           NN_LAYOUT1, 
                                            layout2 =           NN_LAYOUT2,
                                            inter_convergence = INTER_CONVERGENCE,
                                            sym8 =              SYM8_SUB,
                                            only_tile =         ONLY_TILE, #Remove/put None for normal operation
                                            partials =          partials,
                                            use_confidence=     USE_CONFIDENCE)
                                            
else:
    outs, inp_weights =  qcstereo_network.networks_siam(
212
                                            input_tensor=       corr2d_Nx325,
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                                            input_global =      None,
                                            layout1 =           NN_LAYOUT1, 
                                            layout2 =           NN_LAYOUT2,
                                            inter_convergence = False,
                                            sym8 =              SYM8_SUB,
                                            only_tile =         ONLY_TILE, #Remove/put None for normal operation
                                            partials =          partials,
                                            use_confidence=     USE_CONFIDENCE)
                                                                                      
tf_partial_weights = tf.constant(PARTIALS_WEIGHTS,dtype=tf.float32,name="partial_weights")
G_losses = [0.0]*len(partials)
target_disparity_batch=  next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1]
gt_ds_batch_clust =      next_element_tt['gt_ds']
#gt_ds_batch =            next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * (center_tile_index +1)]
gt_ds_batch =            gt_ds_batch_clust[:,2 * center_tile_index: 2 * (center_tile_index +1)]
G_losses[0], _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdiff2, _cost1 = qcstereo_losses.batchLoss(
              out_batch =              outs[0],        # [batch_size,(1..2)] tf_result
              target_disparity_batch=  target_disparity_batch, # next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1], # target_disparity_batch_center, # next_element_tt['target_disparity'], # target_disparity, ### target_d,   # [batch_size]        tf placeholder
              gt_ds_batch =            gt_ds_batch, # next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * (center_tile_index +1)],  # gt_ds_batch_center, ## next_element_tt['gt_ds'], # gt_ds, ### gt,         # [batch_size,2]      tf placeholder
              batch_weights =          tf_batch_weights,
              disp_diff_cap =          DISP_DIFF_CAP,
              disp_diff_slope=         DISP_DIFF_SLOPE,
              absolute_disparity =     ABSOLUTE_DISPARITY,
              use_confidence =         USE_CONFIDENCE, # True, 
              lambda_conf_avg =        0.01,
238
##              lambda_conf_pwr =        0.1,
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
              conf_pwr =               2.0,
              gt_conf_offset =         0.08,
              gt_conf_pwr =            2.0,
              error2_offset =          0, # 0.0025, # (0.05^2)
              disp_wmin =              1.0,    # minimal disparity to apply weight boosting for small disparities
              disp_wmax =              8.0,    # maximal disparity to apply weight boosting for small disparities
              use_out =                False)  # use calculated disparity for disparity weight boosting (False - use target disparity)

G_loss = G_losses[0]
for n in range (1,len(partials)):
    G_losses[n], _, _, _, _, _, _, _ = qcstereo_losses.batchLoss(
              out_batch =              outs[n],        # [batch_size,(1..2)] tf_result
              target_disparity_batch=  target_disparity_batch, #next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1], # target_disparity_batch_center, # next_element_tt['target_disparity'], # target_disparity, ### target_d,   # [batch_size]        tf placeholder
              gt_ds_batch =            gt_ds_batch, # next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * (center_tile_index +1)],  # gt_ds_batch_center, ## next_element_tt['gt_ds'], # gt_ds, ### gt,         # [batch_size,2]      tf placeholder
              batch_weights =          tf_batch_weights,
              disp_diff_cap =          DISP_DIFF_CAP,
              disp_diff_slope=         DISP_DIFF_SLOPE,
              absolute_disparity =     ABSOLUTE_DISPARITY,
              use_confidence =         USE_CONFIDENCE, # True, 
              lambda_conf_avg =        0.01,
259
#              lambda_conf_pwr =        0.1,
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
              conf_pwr =               2.0,
              gt_conf_offset =         0.08,
              gt_conf_pwr =            2.0,
              error2_offset =          0, # 0.0025, # (0.05^2)
              disp_wmin =              1.0,    # minimal disparity to apply weight boosting for small disparities
              disp_wmax =              8.0,    # maximal disparity to apply weight boosting for small disparities
              use_out =                False)  # use calculated disparity for disparity weight boosting (False - use target disparity)

tf_wlosses = tf.multiply(G_losses, tf_partial_weights, name =  "tf_wlosses")
G_losses_sum = tf.reduce_sum(tf_wlosses, name = "G_losses_sum")

if SLOSS_LAMBDA > 0:    
    S_loss, rslt_cost_nw, rslt_cost_w, rslt_d , rslt_avg_disparity, rslt_gt_disparity, rslt_offs = qcstereo_losses.smoothLoss(
               out_batch =             outs[0],                   # [batch_size,(1..2)] tf_result
               target_disparity_batch = target_disparity_batch,    # [batch_size]        tf placeholder
               gt_ds_batch_clust =      gt_ds_batch_clust,           # [batch_size,25,2]      tf placeholder
               clip =                   SLOSS_CLIP,
               absolute_disparity =     ABSOLUTE_DISPARITY, #when false there should be no activation on disparity output !
               cluster_radius =         CLUSTER_RADIUS)
    GS_loss =  tf.add(G_losses_sum, SLOSS_LAMBDA * S_loss, name = "GS_loss")

else:
    S_loss =   tf.constant(0.0, dtype=tf.float32,name = "S_loss")
    GS_loss = G_losses_sum # G_loss
        
#    G_loss +=  Glosses[n]*PARTIALS_WEIGHTS[n]
#tf_partial_weights
if WLOSS_LAMBDA > 0.0:   
    W_loss =     qcstereo_losses.weightsLoss(
        inp_weights =   inp_weights[0], #    inp_weights - list of tensors, currently - just [0]
        tile_layers=    TILE_LAYERS, # 4
        tile_side =     TILE_SIDE, # 9
        wborders_zero = WBORDERS_ZERO)

#    GW_loss =    tf.add(G_loss, WLOSS_LAMBDA * W_loss, name = "GW_loss")
    GW_loss =    tf.add(GS_loss, WLOSS_LAMBDA * W_loss, name = "GW_loss")
else:
    GW_loss =    GS_loss # G_loss
    W_loss =     tf.constant(0.0, dtype=tf.float32,name = "W_loss")
#debug
GT_variance =  debug_gt_variance(indx = 0,        # This tile index (0..8)
                                 center_indx = 4, # center tile index
                                 gt_ds_batch = next_element_tt['gt_ds'])# [?:18]
              
tf_ph_G_loss =    tf.placeholder(tf.float32,shape=None,name='G_loss_avg')
tf_ph_G_losses =  tf.placeholder(tf.float32,shape=[len(partials)],name='G_losses_avg')
tf_ph_S_loss =    tf.placeholder(tf.float32,shape=None,name='S_loss_avg')
tf_ph_W_loss =    tf.placeholder(tf.float32,shape=None,name='W_loss_avg')
tf_ph_GW_loss =   tf.placeholder(tf.float32,shape=None,name='GW_loss_avg')
tf_ph_sq_diff =   tf.placeholder(tf.float32,shape=None,name='sq_diff_avg')
tf_gtvar_diff =   tf.placeholder(tf.float32,shape=None,name='gtvar_diff')
tf_img_test0 =    tf.placeholder(tf.float32,shape=None,name='img_test0')
tf_img_test9 =    tf.placeholder(tf.float32,shape=None,name='img_test9')
with tf.name_scope('sample'):
    tf.summary.scalar("GW_loss",      GW_loss)
    tf.summary.scalar("G_loss",       G_loss)
    tf.summary.scalar("S_loss",       S_loss)
    tf.summary.scalar("W_loss",       W_loss)
    tf.summary.scalar("sq_diff",      _cost1)
    tf.summary.scalar("gtvar_diff",   GT_variance)
    
with tf.name_scope('epoch_average'):
#    for i, tl in enumerate(tf_ph_G_losses):
#       tf.summary.scalar("GW_loss_epoch_"+str(i), tl)
    for i in range(tf_ph_G_losses.shape[0]):
        tf.summary.scalar("G_loss_epoch_"+str(i), tf_ph_G_losses[i])
        
    tf.summary.scalar("GW_loss_epoch", tf_ph_GW_loss)
    tf.summary.scalar("G_loss_epoch",  tf_ph_G_loss)
    tf.summary.scalar("S_loss_epoch",  tf_ph_S_loss)
    tf.summary.scalar("W_loss_epoch",  tf_ph_W_loss)
    tf.summary.scalar("sq_diff_epoch", tf_ph_sq_diff)
    tf.summary.scalar("gtvar_diff",    tf_gtvar_diff)
    
    tf.summary.scalar("img_test0",     tf_img_test0)
    tf.summary.scalar("img_test9",     tf_img_test9)

t_vars=            tf.trainable_variables()
lr=                tf.placeholder(tf.float32)
G_opt=             tf.train.AdamOptimizer(learning_rate=lr).minimize(GW_loss)


Andrey Filippov's avatar
Andrey Filippov committed
342
ROOT_PATH  = './attic/nn_ds_neibs17_graph'+SUFFIX+"/"
343 344 345 346 347 348 349 350 351 352 353 354
TRAIN_PATH =  ROOT_PATH + 'train'
TEST_PATH  =  ROOT_PATH + 'test'
TEST_PATH1  = ROOT_PATH + 'test1'

# CLEAN OLD STAFF
shutil.rmtree(TRAIN_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH1, ignore_errors=True)

WIDTH=324
HEIGHT=242

Andrey Filippov's avatar
Andrey Filippov committed
355 356 357
num_train_subs = len(train_next) # number of (different type) merged training sets    
dataset_train_size = TRAIN_BUFFER_GPU * num_train_subs # TRAIN_BUFFER_SIZE

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
with tf.Session()  as sess:
    
    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())
    
    merged = tf.summary.merge_all()
    train_writer =    tf.summary.FileWriter(TRAIN_PATH, sess.graph)
    test_writer  =    tf.summary.FileWriter(TEST_PATH, sess.graph)
    test_writer1  =   tf.summary.FileWriter(TEST_PATH1, sess.graph)
    
    loss_gw_train_hist=  np.empty(dataset_train_size, dtype=np.float32)
    loss_g_train_hist=   np.empty(dataset_train_size, dtype=np.float32)
    
    loss_g_train_hists=   [np.empty(dataset_train_size, dtype=np.float32) for p in partials]
    
    
    loss_s_train_hist=   np.empty(dataset_train_size, dtype=np.float32)
    loss_w_train_hist=   np.empty(dataset_train_size, dtype=np.float32)
    
    loss_gw_test_hist=  np.empty(dataset_test_size, dtype=np.float32)
#    loss_g_test_hist=   np.empty(dataset_test_size, dtype=np.float32)
    loss_g_test_hists=   [np.empty(dataset_test_size, dtype=np.float32) for p in partials]
    
    loss_s_test_hist=   np.empty(dataset_test_size, dtype=np.float32)
    loss_w_test_hist=   np.empty(dataset_test_size, dtype=np.float32)
    
    loss2_train_hist= np.empty(dataset_train_size, dtype=np.float32)
    loss2_test_hist=  np.empty(dataset_test_size, dtype=np.float32)
    train_gw_avg = 0.0
    train_g_avg =  0.0
    train_g_avgs =  [0.0]*len(partials)
    
    train_w_avg =  0.0
    train_s_avg =  0.0
    test_gw_avg =  0.0     
    test_g_avg =   0.0     
    test_g_avgs =  [0.0]*len(partials)
    test_w_avg =   0.0     
    test_s_avg =   0.0     

    train2_avg = 0.0
    test2_avg = 0.0
    gtvar_train_hist=  np.empty(dataset_train_size, dtype=np.float32)
    gtvar_test_hist=   np.empty(dataset_test_size, dtype=np.float32)
    gtvar_train = 0.0
    gtvar_test = 0.0
    gtvar_train_avg = 0.0
    gtvar_test_avg =  0.0
    img_gain_test0 =  1.0
    img_gain_test9 =  1.0
    
Andrey Filippov's avatar
Andrey Filippov committed
409 410
    thr=None
    thr_result = None
Andrey Filippov's avatar
Andrey Filippov committed
411
    trains_to_update = [train_next[n_train]['more_files'] for n_train in range(len(train_next))]
412 413 414 415 416 417 418 419
    for epoch in range (EPOCHS_TO_RUN):
        """
        update files after each epoch, all 4.
        Convert to threads after testing
        """
        if (FILE_UPDATE_EPOCHS > 0) and (epoch % FILE_UPDATE_EPOCHS == 0):
            if not thr is None:
                if thr.is_alive():
Andrey Filippov's avatar
Andrey Filippov committed
420
                    qsf.print_time("***WAITING*** until tfrecord gets loaded", end=" ")
421
                else:
Andrey Filippov's avatar
Andrey Filippov committed
422
                    qsf.print_time("tfrecord is ***ALREADY LOADED*** loaded", end=" ")
423 424 425 426 427 428
        
                thr.join()
                qsf.print_time("Done")
                qsf.print_time("Inserting new data", end=" ")
                for n_train in range(len(trains_to_update)):
                    if trains_to_update[n_train]:
Andrey Filippov's avatar
Andrey Filippov committed
429 430 431
                        qsf.add_file_to_dataset(dataset = dataset_train,
                                                new_dataset = thr_result[n_train],
                                                train_next = train_next[n_train])
432 433 434
                qsf.print_time("Done")
            thr_result = []
            fpaths = []
Andrey Filippov's avatar
Andrey Filippov committed
435 436
            for n_train in range(len(trains_to_update)):
                if trains_to_update[n_train]:
437 438 439 440
                    fpaths.append(files['train'][n_train][train_next[n_train]['file']])
                    qsf.print_time("Will read in background: "+fpaths[-1])
            thr = Thread(target=qsf.getMoreFiles, args=(fpaths,thr_result, CLUSTER_RADIUS, HOR_FLIP, TILE_LAYERS, TILE_SIDE))            
            thr.start()        
Andrey Filippov's avatar
Andrey Filippov committed
441
        train_buf_index = epoch %   TRAIN_BUFFER_CPU # GPU memory from CPU memory (now 4)
442 443 444 445 446 447 448 449 450 451
        if   epoch >=600:
            learning_rate = LR600
        elif epoch >=400:
            learning_rate = LR400
        elif epoch >=200:
            learning_rate = LR200
        elif epoch >=100:
            learning_rate = LR100
        else:
            learning_rate = LR
Andrey Filippov's avatar
Andrey Filippov committed
452
        if (train_buf_index == 0) and SHUFFLE_FILES:
453
            qsf.print_time("Shuffling how datasets datasets_train_lvar and datasets_train_hvar are zipped together", end="")
Andrey Filippov's avatar
Andrey Filippov committed
454 455 456
            qsf.shuffle_in_place(
                dataset_data = dataset_train, #alternating clusters from 4 sources.each cluster has all needed data (concatenated)
                period = num_train_subs)
457
            qsf.print_time("  Done")
Andrey Filippov's avatar
Andrey Filippov committed
458 459 460 461 462 463 464 465
        sti = train_buf_index *  dataset_train_size * BATCH_SIZE #      TRAIN_BUFFER_GPU * num_train_subs
        eti = sti+   dataset_train_size * BATCH_SIZE#    (train_buf_index +1) *  TRAIN_BUFFER_GPU * num_train_subs
         
        sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder:           dataset_train[sti:eti,:corr2d_len], 
                                                     target_disparity_train_placeholder: dataset_train[sti:eti,corr2d_len:corr2d_len+target_disparity_len],
                                                     gt_ds_train_placeholder:            dataset_train[sti:eti,corr2d_len+target_disparity_len:] })
        
        
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        for i in range(dataset_train_size):
            try:
#                train_summary,_, GW_loss_trained,  G_loss_trained,  W_loss_trained,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance  = sess.run(
                train_summary,_, GW_loss_trained,  G_losses_trained,  S_loss_trained,  W_loss_trained,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance  = sess.run(
                    [   merged,
                        G_opt,
                        GW_loss,
#                        G_loss,
                        G_losses,
                        S_loss,
                        W_loss,
                        outs[0],
                        _disp_slice,
                        _d_gt_slice,
                        _out_diff,
                        _out_diff2,
                        _w_norm,
                        _out_wdiff2,
                        _cost1,
                        GT_variance
                    ],
                    feed_dict={tf_batch_weights: feed_batch_weights,
                               lr:               learning_rate,
                               tf_ph_GW_loss:    train_gw_avg,
                               tf_ph_G_loss:     train_g_avgs[0], #train_g_avg,
                               tf_ph_G_losses:   train_g_avgs,
                               tf_ph_S_loss:     train_s_avg,
                               tf_ph_W_loss:     train_w_avg,
                               tf_ph_sq_diff:    train2_avg,
                               tf_gtvar_diff:    gtvar_train_avg,
                               tf_img_test0:     img_gain_test0,
                               tf_img_test9:     img_gain_test9}) # previous value of *_avg #Fetch argument 0.0 has invalid type <class 'float'>, must be a string or Tensor. (Can not convert a float into a Tensor or Operation.)
                
                loss_gw_train_hist[i] = GW_loss_trained
                for nn, gl  in enumerate(G_losses_trained):
                    loss_g_train_hists[nn][i] =  gl
                loss_s_train_hist[i] =  S_loss_trained
                loss_w_train_hist[i] =  W_loss_trained
                loss2_train_hist[i] = out_cost1
                gtvar_train_hist[i] = gt_variance
            except tf.errors.OutOfRangeError:
Andrey Filippov's avatar
Andrey Filippov committed
507
                print("****** NO MORE DATA! train done at step %d"%(i))
508
                break
Andrey Filippov's avatar
Andrey Filippov committed
509
#            print ("==== i=%d, GW_loss_trained=%f  loss_gw_train_hist[%d]=%f ===="%(i,GW_loss_trained,i,loss_gw_train_hist[i]))
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

        train_gw_avg =      np.average(loss_gw_train_hist).astype(np.float32)     
        train_g_avg =       np.average(loss_g_train_hist).astype(np.float32) 
        for nn, lgth  in enumerate(loss_g_train_hists):
            train_g_avgs[nn] =       np.average(lgth).astype(np.float32)
###############        
        train_s_avg =       np.average(loss_s_train_hist).astype(np.float32)     
        train_w_avg =       np.average(loss_w_train_hist).astype(np.float32)     
        train2_avg =      np.average(loss2_train_hist).astype(np.float32)
        gtvar_train_avg = np.average(gtvar_train_hist).astype(np.float32)
        
        test_summaries = [0.0]*len(datasets_test)
        tst_avg =        [0.0]*len(datasets_test)
        tst2_avg =       [0.0]*len(datasets_test)
        for ntest,dataset_test in enumerate(datasets_test):
Andrey Filippov's avatar
Andrey Filippov committed
525 526 527 528
            sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder:      dataset_test[:, :corr2d_len],  #['corr2d'],
                                                    target_disparity_train_placeholder: dataset_test[:, corr2d_len:corr2d_len+target_disparity_len], # ['target_disparity'],
                                                    gt_ds_train_placeholder:            dataset_test[:, corr2d_len+target_disparity_len:] }) # ['gt_ds']})
            
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
            for i in range(dataset_test_size):
                try:
                    test_summaries[ntest], GW_loss_tested, G_losses_tested, S_loss_tested, W_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance = sess.run(
                        [merged,
                         GW_loss,
                         G_losses,
                         S_loss,
                         W_loss,
                         outs[0],
                         _disp_slice,
                         _d_gt_slice,
                         _out_diff,
                         _out_diff2,
                         _w_norm,
                         _out_wdiff2,
                         _cost1,
                         GT_variance
                         ],
                         feed_dict={tf_batch_weights: feed_batch_weight_1 , #  feed_batch_weights,
                                    lr:               learning_rate,
                                    tf_ph_GW_loss:    test_gw_avg,
                                    tf_ph_G_loss:     test_g_avg,
                                    tf_ph_G_losses:   test_g_avgs, # train_g_avgs, # temporary, there is o data fro test
                                    tf_ph_S_loss:     test_s_avg,
                                    tf_ph_W_loss:     test_w_avg,
                                    tf_ph_sq_diff:    test2_avg,
                                    tf_gtvar_diff:    gtvar_test_avg,
                                    tf_img_test0:     img_gain_test0,
                                    tf_img_test9:     img_gain_test9})  # previous value of *_avg
                    loss_gw_test_hist[i] =  GW_loss_tested
                    
                    for nn, gl  in enumerate(G_losses_tested):
                        loss_g_test_hists[nn][i] =  gl

                    loss_s_test_hist[i] =   S_loss_tested
                    loss_w_test_hist[i] =   W_loss_tested
                    loss2_test_hist[i] = out_cost1
                    gtvar_test_hist[i] = gt_variance
                except tf.errors.OutOfRangeError:
                    print("test done at step %d"%(i))
                    break
                    
            test_gw_avg =  np.average(loss_gw_test_hist).astype(np.float32)
            
            for nn, lgth  in enumerate(loss_g_test_hists):
                test_g_avgs[nn] =       np.average(lgth).astype(np.float32)
            
            test_s_avg =  np.average(loss_s_test_hist).astype(np.float32)
            test_w_avg =  np.average(loss_w_test_hist).astype(np.float32)
            tst_avg[ntest] =  test_gw_avg   
            test2_avg = np.average(loss2_test_hist).astype(np.float32)
            tst2_avg[ntest] =  test2_avg   
            gtvar_test_avg = np.average(gtvar_test_hist).astype(np.float32)
             
        train_writer.add_summary(train_summary, epoch)
        test_writer.add_summary(test_summaries[0], epoch)
        test_writer1.add_summary(test_summaries[1], epoch)
        
Andrey Filippov's avatar
Andrey Filippov committed
587
        qsf.print_time("==== %d:%d -> %f %f %f (%f %f %f) dbg:%f %f ===="%(epoch,i,train_gw_avg, tst_avg[0], tst_avg[1], train2_avg, tst2_avg[0], tst2_avg[1], gtvar_train_avg, gtvar_test_avg))
588
        if (((epoch + 1) == EPOCHS_TO_RUN) or (((epoch + 1) % EPOCHS_FULL_TEST) == 0)) and (len(image_data) > 0) :
Andrey Filippov's avatar
Andrey Filippov committed
589 590 591 592
            if (epoch + 1) == EPOCHS_TO_RUN: # last
                print("Last epoch, removing train/test datasets to reduce memory footprint")
                del(dataset_train)
                del(dataset_test)             
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
            last_epoch = (epoch + 1) == EPOCHS_TO_RUN
            ind_img = [0]
            if last_epoch:
                ind_img = [i for i in range(len(image_data))]
###################################################
# Read the full image
################################################### 
            test_summaries_img = [0.0]*len(ind_img) # datasets_img)
            disp_out=     np.empty((WIDTH*HEIGHT), dtype=np.float32)
            dbg_cost_nw=  np.empty((WIDTH*HEIGHT), dtype=np.float32)
            dbg_cost_w=   np.empty((WIDTH*HEIGHT), dtype=np.float32)
            dbg_d=        np.empty((WIDTH*HEIGHT), dtype=np.float32)
            
            dbg_avg_disparity = np.empty((WIDTH*HEIGHT), dtype=np.float32)
            dbg_gt_disparity =  np.empty((WIDTH*HEIGHT), dtype=np.float32)
            dbg_offs =          np.empty((WIDTH*HEIGHT), dtype=np.float32)
            
            for ntest in ind_img: # datasets_img):
                dataset_img = qsf.readImageData(
                    image_data =     image_data,
                    files =          files,
                    indx =           ntest,
                    cluster_radius = CLUSTER_RADIUS,
Andrey Filippov's avatar
Andrey Filippov committed
616 617
                    tile_layers =    TILE_LAYERS,
                    tile_side =      TILE_SIDE,
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
                    width =          IMG_WIDTH,
                    replace_nans =   True)

                sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder:      dataset_img['corr2d'],
                                                        target_disparity_train_placeholder: dataset_img['target_disparity'],
                                                        gt_ds_train_placeholder:            dataset_img['gt_ds']})
                for start_offs in range(0,disp_out.shape[0],BATCH_SIZE):
                    end_offs = min(start_offs+BATCH_SIZE,disp_out.shape[0])
                    
                    try:
                        test_summaries_img[ntest],output, cost_nw, cost_w, dd, avg_disparity, gt_disparity, offs  = sess.run(
                            [merged,
                             outs[0],     # {?,1]
                             rslt_cost_nw, #[?,]
                             rslt_cost_w,  #[?,]
                             rslt_d,       #[?,]
                             
                             rslt_avg_disparity,
                             rslt_gt_disparity,
                             rslt_offs                       
                             ],
                             feed_dict={
                                        tf_batch_weights: feed_batch_weight_1, # feed_batch_weights,
#                                        lr:               learning_rate,
                                        tf_ph_GW_loss:    test_gw_avg,
                                        tf_ph_G_loss:     test_g_avg,
                                        tf_ph_G_losses:   train_g_avgs, # temporary, there is o data for test
                                        tf_ph_S_loss:     test_s_avg,
                                        tf_ph_W_loss:     test_w_avg,
                                        tf_ph_sq_diff:    test2_avg,
                                        tf_gtvar_diff:    gtvar_test_avg,
                                        tf_img_test0:     img_gain_test0,
                                        tf_img_test9:     img_gain_test9})  # previous value of *_avg
                    except tf.errors.OutOfRangeError:
                        print("test done at step %d"%(i))
                        break
                    try:
                        disp_out[start_offs:end_offs] = output.flatten()
                        dbg_cost_nw[start_offs:end_offs] = cost_nw.flatten()
                        dbg_cost_w [start_offs:end_offs] = cost_w.flatten()
                        dbg_d[start_offs:end_offs] = dd.flatten()
                        dbg_avg_disparity[start_offs:end_offs] = avg_disparity.flatten()
                        dbg_gt_disparity[start_offs:end_offs] = gt_disparity.flatten()
                        dbg_offs[start_offs:end_offs] = offs.flatten()
                        
                        
                    except ValueError:
                        print("dataset_img_size= %d, i=%d, output.shape[0]=%d "%(dataset_img_size, i, output.shape[0]))
                        break;    
                    pass
                result_file = files['result'][ntest] # result_files[ntest]
                try:
                    os.makedirs(os.path.dirname(result_file))
                except:
                    pass     

#                rslt = np.concatenate([disp_out.reshape(-1,1), t_disp, gtruth],1)
                rslt = np.concatenate(
                    [disp_out.reshape(-1,1),
                     dataset_img['t_disps'], #t_disps[ntest],
                     dataset_img['gtruths'], # gtruths[ntest],
                     dbg_cost_nw.reshape(-1,1),
                     dbg_cost_w.reshape(-1,1),
                     dbg_d.reshape(-1,1),
                     dbg_avg_disparity.reshape(-1,1),
                     dbg_gt_disparity.reshape(-1,1),
                     dbg_offs.reshape(-1,1)],1)
                np.save(result_file,           rslt.reshape(HEIGHT,WIDTH,-1))
                rslt = qsf.eval_results(result_file, ABSOLUTE_DISPARITY,radius=CLUSTER_RADIUS)                
                img_gain_test0 = rslt[0][0]/rslt[0][1]   
                img_gain_test9 = rslt[9][0]/rslt[9][1]   
                if SAVE_TIFFS:
                    qsf.result_npy_to_tiff(result_file, ABSOLUTE_DISPARITY, fix_nan = True)
                    
                """
                Remove dataset_img (if it is not [0] to reduce memory footprint         
                """
                if ntest > 0:
                    image_data[ntest] = None
     
698
    # Close writers
699 700 701 702 703 704 705
    train_writer.close()
    test_writer.close()
    test_writer1.close()
#reports error: Exception ignored in: <bound method BaseSession.__del__ of <tensorflow.python.client.session.Session object at 0x7efc5f720ef0>> if there is no print before exit()

print("All done")
exit (0)