nn_ds_inmem_tmp.py 20.3 KB
Newer Older
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#!/usr/bin/env python3
from numpy import float64

__copyright__ = "Copyright 2018, Elphel, Inc."
__license__   = "GPL-3.0+"
__email__     = "andrey@elphel.com"


from PIL import Image

import os
import sys
import glob

import numpy as np
import itertools

import time

import matplotlib.pyplot as plt

import shutil

TIME_START = time.time()
TIME_LAST  = TIME_START
DEBUG_LEVEL= 1
DISP_BATCH_BINS =   20 # Number of batch disparity bins
STR_BATCH_BINS =    10 # Number of batch strength bins
FILES_PER_SCENE =    5 # number of random offset files for the scene to select from (0 - use all available)
#MIN_BATCH_CHOICES = 10 # minimal number of tiles in a file for each bin to select from 
#MAX_BATCH_FILES =   10 #maximal number of files to use in a batch
MAX_EPOCH =        500
33
LR =               1e-4 # learning rate
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
USE_CONFIDENCE =     False
ABSOLUTE_DISPARITY = False
DEBUG_PLT_LOSS =     True
FEATURES_PER_TILE =  324
EPOCHS_TO_RUN =     10000 #0
RUN_TOT_AVG =       100 # last batches to average. Epoch is 307 training  batches  
BATCH_SIZE =       1000 # Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SHUFFLE_EPOCH =    True
#DEBUG_PACK_TILES = True

#http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python
class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[38;5;214m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    BOLDWHITE = '\033[1;37m'
    UNDERLINE = '\033[4m'
def print_time(txt="",end="\n"):
    global TIME_LAST
    t = time.time()
    if txt:
        txt +=" "
    print(("%s"+bcolors.BOLDWHITE+"at %.4fs (+%.4fs)"+bcolors.ENDC)%(txt,t-TIME_START,t-TIME_LAST), end = end, flush=True)
    TIME_LAST = t
#reading to memory (testing)
def readTFRewcordsEpoch(train_filename):
#    filenames = [train_filename]
#    dataset = tf.data.TFRecordDataset(filenames)
    if not  '.tfrecords' in train_filename:
        train_filename += '.tfrecords'
    record_iterator = tf.python_io.tf_record_iterator(path=train_filename)
    corr2d_list=[]
    target_disparity_list=[]
    gt_ds_list = []
    for string_record in record_iterator:
        example = tf.train.Example()
        example.ParseFromString(string_record)
        corr2d_list.append           (np.array(example.features.feature['corr2d'].float_list.value, dtype=np.float32))
#        target_disparity_list.append(np.array(example.features.feature['target_disparity'].float_list.value[0], dtype=np.float32))
        target_disparity_list.append (np.array(example.features.feature['target_disparity'].float_list.value, dtype=np.float32))
        gt_ds_list.append            (np.array(example.features.feature['gt_ds'].float_list.value, dtype= np.float32))
    corr2d=            np.array(corr2d_list)
    target_disparity = np.array(target_disparity_list)
    gt_ds =            np.array(gt_ds_list)
    return corr2d, target_disparity, gt_ds   

#from http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
        'corr2d':           tf.FixedLenFeature([324],tf.float32), #string),
        'target_disparity': tf.FixedLenFeature([1],   tf.float32), #.string),
        'gt_ds':            tf.FixedLenFeature([2],  tf.float32)  #.string)
        })
    corr2d =           features['corr2d'] # tf.decode_raw(features['corr2d'], tf.float32)
    target_disparity = features['target_disparity'] # tf.decode_raw(features['target_disparity'], tf.float32)
    gt_ds =            tf.cast(features['gt_ds'], tf.float32) # tf.decode_raw(features['gt_ds'], tf.float32)
    in_features = tf.concat([corr2d,target_disparity],0)
    # still some nan-s in correlation data?
#    in_features_clean = tf.where(tf.is_nan(in_features), tf.zeros_like(in_features), in_features)     
#    corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features_clean, target_disparity, gt_ds],
    corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features, target_disparity, gt_ds],
                                                 batch_size=1000, # 2,
                                                 capacity=30,
                                                 num_threads=2,
                                                 min_after_dequeue=10)
    return corr2d_out, target_disparity_out, gt_ds_out

#http://adventuresinmachinelearning.com/introduction-tensorflow-queuing/

#Main code
try:
    train_filenameTFR =  sys.argv[1]
except IndexError:
    train_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train.tfrecords"
try:
    test_filenameTFR =  sys.argv[2]
except IndexError:
    test_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/test.tfrecords"
#FILES_PER_SCENE


print_time("Importing TensorCrawl")

import tensorflow as tf
import tensorflow.contrib.slim as slim

print_time("TensorCrawl imported")

print_time("Importing training data... ", end="")
corr2d_train, target_disparity_train, gt_ds_train = readTFRewcordsEpoch(train_filenameTFR)
print_time("  Done")
dataset_train = tf.data.Dataset.from_tensor_slices({
    "corr2d":corr2d_train,
    "target_disparity": target_disparity_train,
    "gt_ds": gt_ds_train})
dataset_train_size = len(corr2d_train)
print_time("dataset_train.output_types "+str(dataset_train.output_types)+", dataset_train.output_shapes "+str(dataset_train.output_shapes)+", number of elements="+str(dataset_train_size))
dataset_train = dataset_train.batch(BATCH_SIZE)
dataset_train_size /= BATCH_SIZE
print("dataset_train.output_types "+str(dataset_train.output_types)+", dataset_train.output_shapes "+str(dataset_train.output_shapes)+", number of elements="+str(dataset_train_size))
iterator_train = dataset_train.make_initializable_iterator()
next_element_train = iterator_train.get_next()

'''
print_time("Importing test data... ", end="")
corr2d_test, target_disparity_test, gt_ds_test = readTFRewcordsEpoch(test_filenameTFR)
print_time("  Done")
dataset_test =  tf.data.Dataset.from_tensor_slices({
    "corr2d":corr2d_test,
    "target_disparity": target_disparity_test,
    "gt_ds": gt_ds_test})
dataset_test_size = len(corr2d_test)
print_time("dataset_test.output_types "+str(dataset_test.output_types)+", dataset_test.output_shapes "+str(dataset_test.output_shapes)+", number of elements="+str(dataset_test_size))
dataset_test =  dataset_test.batch(BATCH_SIZE)
dataset_test_size /= BATCH_SIZE
print("dataset_test.output_types "+str(dataset_test.output_types)+", dataset_test.output_shapes "+str(dataset_test.output_shapes)+", number of elements="+str(dataset_test_size))
iterator_test =  dataset_test.make_initializable_iterator()
next_element_test =  iterator_test.get_next()
'''
#https://www.tensorflow.org/versions/r1.5/programmers_guide/datasets

result_dir = './attic/result_inmem/'
checkpoint_dir = './attic/result_inmem/'
save_freq = 500

def lrelu(x):
170
    return tf.maximum(x*0.5,x)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
171 172 173 174
#    return tf.nn.relu(x)

def network(input):

175 176 177 178 179 180 181 182 183 184
  fc1  = slim.fully_connected(input, 256, activation_fn=lrelu,scope='g_fc1')
  fc2  = slim.fully_connected(fc1,   128, activation_fn=lrelu,scope='g_fc2')
##  fc3  =     slim.fully_connected(input, 256, activation_fn=lrelu,scope='g_fc3')
##  fc4  =     slim.fully_connected(fc3,   128, activation_fn=lrelu,scope='g_fc4')
##  fc5  =     slim.fully_connected(fc4,    64, activation_fn=lrelu,scope='g_fc5')
  
  fc3  =     slim.fully_connected(fc2,    64, activation_fn=lrelu,scope='g_fc3')
  fc4  =     slim.fully_connected(fc3,    20, activation_fn=lrelu,scope='g_fc4')
  fc5  =     slim.fully_connected(fc4,    16, activation_fn=lrelu,scope='g_fc5')
  
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  if USE_CONFIDENCE:
      fc6  = slim.fully_connected(fc5,     2, activation_fn=lrelu,scope='g_fc6')
  else:     
      fc6  = slim.fully_connected(fc5,     1, activation_fn=None,scope='g_fc6')
#If using residual disparity, split last layer into 2 or remove activation and add rectifier to confidence only  
  return fc6

def batchLoss(out_batch,                   # [batch_size,(1..2)] tf_result
              target_disparity_batch,      # [batch_size]        tf placeholder
              gt_ds_batch,                 # [batch_size,2]      tf placeholder
              absolute_disparity =     True, #when false there should be no activation on disparity output ! 
              use_confidence =         True, 
              lambda_conf_avg =        0.01,
              lambda_conf_pwr =        0.1,
              conf_pwr =               2.0,
              gt_conf_offset =         0.08,
              gt_conf_pwr =            1.0):
    with tf.name_scope("BatchLoss"):
        """
        Here confidence should be after relU. Disparity - may be also if absolute, but no activation if output is residual disparity
        """
        tf_lambda_conf_avg = tf.constant(lambda_conf_avg, dtype=tf.float32, name="tf_lambda_conf_avg")
        tf_lambda_conf_pwr = tf.constant(lambda_conf_pwr, dtype=tf.float32, name="tf_lambda_conf_pwr")
        tf_conf_pwr =        tf.constant(conf_pwr,        dtype=tf.float32, name="tf_conf_pwr")
        tf_gt_conf_offset =  tf.constant(gt_conf_offset,  dtype=tf.float32, name="tf_gt_conf_offset")
        tf_gt_conf_pwr =     tf.constant(gt_conf_pwr,     dtype=tf.float32, name="tf_gt_conf_pwr")
        tf_num_tiles =       tf.shape(gt_ds_batch)[0]
        tf_0f =              tf.constant(0.0,             dtype=tf.float32, name="tf_0f")
        tf_1f =              tf.constant(1.0,             dtype=tf.float32, name="tf_1f")
        tf_maxw =            tf.constant(1.0,             dtype=tf.float32, name="tf_maxw")
        if gt_conf_pwr == 0:
            w = tf.ones((out_batch.shape[0]), dtype=tf.float32,name="w_ones")
        else:
    #        w_slice = tf.slice(gt_ds_batch,[0,1],[-1,1],              name = "w_gt_slice")
            w_slice = tf.reshape(gt_ds_batch[:,1],[-1],                     name = "w_gt_slice")
            
            w_sub =   tf.subtract      (w_slice, tf_gt_conf_offset,         name = "w_sub")
    #        w_clip =  tf.clip_by_value(w_sub, tf_0f,tf_maxw,              name = "w_clip")
            w_clip =  tf.maximum(w_sub, tf_0f,                              name = "w_clip")
            if gt_conf_pwr == 1.0:
                w = w_clip
            else:
                w=tf.pow(w_clip, tf_gt_conf_pwr, name = "w")
    
        if use_confidence:
            tf_num_tilesf =      tf.cast(tf_num_tiles, dtype=tf.float32,     name="tf_num_tilesf")
    #        conf_slice =     tf.slice(out_batch,[0,1],[-1,1],                name = "conf_slice")
            conf_slice =     tf.reshape(out_batch[:,1],[-1],                 name = "conf_slice")
            conf_sum =       tf.reduce_sum(conf_slice,                       name = "conf_sum")
            conf_avg =       tf.divide(conf_sum, tf_num_tilesf,              name = "conf_avg")
            conf_avg1 =      tf.subtract(conf_avg, tf_1f,                    name = "conf_avg1")
            conf_avg2 =      tf.square(conf_avg1,                            name = "conf_avg2")
            cost2 =          tf.multiply (conf_avg2, tf_lambda_conf_avg,     name = "cost2")
    
            iconf_avg =      tf.divide(tf_1f, conf_avg,                      name = "iconf_avg")
            nconf =          tf.multiply (conf_slice, iconf_avg,             name = "nconf") #normalized confidence
            nconf_pwr =      tf.pow(nconf, conf_pwr,                         name = "nconf_pwr")
            nconf_pwr_sum =  tf.reduce_sum(nconf_pwr,                        name = "nconf_pwr_sum")
            nconf_pwr_offs = tf.subtract(nconf_pwr_sum, tf_1f,               name = "nconf_pwr_offs")
            cost3 =          tf.multiply (conf_avg2, nconf_pwr_offs,         name = "cost3")
            w_all =          tf.multiply (w, nconf,                          name = "w_all")
        else:
            w_all = w
#            cost2 = 0.0
#            cost3 = 0.0    
        # normalize weights
        w_sum =              tf.reduce_sum(w_all,                            name = "w_sum")
        iw_sum =             tf.divide(tf_1f, w_sum,                         name = "iw_sum")
        w_norm =             tf.multiply (w_all, iw_sum,                     name = "w_norm")
        
    #    disp_slice =         tf.slice(out_batch,[0,0],[-1,1],                name = "disp_slice")
    #    d_gt_slice =         tf.slice(gt_ds_batch,[0,0],[-1,1],              name = "d_gt_slice")
        disp_slice =         tf.reshape(out_batch[:,0],[-1],                 name = "disp_slice")
        d_gt_slice =         tf.reshape(gt_ds_batch[:,0],[-1],               name = "d_gt_slice")
        if absolute_disparity:
            out_diff =       tf.subtract(disp_slice, d_gt_slice,             name = "out_diff")
        else:
            td_flat =        tf.reshape(target_disparity_batch,[-1],         name = "td_flat")
            residual_disp =  tf.subtract(d_gt_slice, td_flat,                name = "residual_disp")
            out_diff =       tf.subtract(disp_slice, residual_disp,          name = "out_diff")
        out_diff2 =          tf.square(out_diff,                             name = "out_diff2")
        out_wdiff2 =         tf.multiply (out_diff2, w_norm,                 name = "out_wdiff2")
        
        cost1 =              tf.reduce_sum(out_wdiff2,                       name = "cost1")
        
        if use_confidence:
            cost12 =         tf.add(cost1,  cost2,                           name = "cost12")
            cost123 =        tf.add(cost12, cost3,                           name = "cost123")    
            
            return cost123, disp_slice, d_gt_slice, out_diff,out_diff2, w_norm, out_wdiff2, cost1
        else:
            return cost1, disp_slice, d_gt_slice, out_diff,out_diff2, w_norm, out_wdiff2, cost1
    

#corr2d325 = tf.concat([corr2d,target_disparity],0)
#corr2d325 = tf.concat([next_element_train['corr2d'],tf.reshape(next_element_train['target_disparity'],(-1,1))],1)
corr2d325 = tf.concat([next_element_train['corr2d'], next_element_train['target_disparity']],1)
#next_element_train

#    in_features = tf.concat([corr2d,target_disparity],0)

out =       network(corr2d325)
#Try standard loss functions first
G_loss, _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdiff2, _cost1 = batchLoss(out_batch =         out,        # [batch_size,(1..2)] tf_result
              target_disparity_batch=  next_element_train['target_disparity'], # target_disparity, ### target_d,   # [batch_size]        tf placeholder
              gt_ds_batch =            next_element_train['gt_ds'], # gt_ds, ### gt,         # [batch_size,2]      tf placeholder
              absolute_disparity =     ABSOLUTE_DISPARITY,
              use_confidence =         USE_CONFIDENCE, # True, 
              lambda_conf_avg =        0.01,
              lambda_conf_pwr =        0.1,
              conf_pwr =               2.0,
              gt_conf_offset =         0.08,
              gt_conf_pwr =            1.0)

tf.summary.scalar("G_loss",G_loss)

t_vars=tf.trainable_variables()
lr=tf.placeholder(tf.float32)
G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss)

saver=tf.train.Saver()

ROOT_PATH  = './attic/nn_ds_inmem_graph1/'
TRAIN_PATH = ROOT_PATH + 'train'
TEST_PATH  = ROOT_PATH + 'test'

# CLEAN OLD STAFF
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
312 313
shutil.rmtree(TRAIN_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH, ignore_errors=True)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
314 315 316 317 318 319 320 321 322 323 324 325

with tf.Session()  as sess:
    
    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())
    
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(TRAIN_PATH, sess.graph)
    test_writer  = tf.summary.FileWriter(TEST_PATH, sess.graph)
    
    for epoch in range(EPOCHS_TO_RUN):
        
326 327
 #       if SHUFFLE_EPOCH:
        dataset_train = dataset_train.shuffle(buffer_size=10000)
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
328 329 330 331 332 333
        sess.run(iterator_train.initializer)
        
        i=0
        while True:
            
            # overall are 307, start 'testing' testing from START_TEST
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
334
            START_TEST = 200
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
335 336 337 338
            
            # Train run
            if i<START_TEST:
                
339
                if (epoch <50) or (epoch > 100) :
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
340
                    
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
                    try:
        #                _, G_current,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out, target_disparity_out, gt_ds_out = sess.run(
                        train_summary,_, G_loss_trained,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out  = sess.run(
                            [   merged,
                                G_opt,
                                G_loss,
                                out,
                                _disp_slice,
                                _d_gt_slice,
                                _out_diff,
                                _out_diff2,
                                _w_norm,
                                _out_wdiff2,
                                _cost1,
                                corr2d325,
        #                     target_disparity,
        #                     gt_ds
                            ],
                            feed_dict={lr:LR})
                        
                        # save all for now as a test
                        #train_writer.add_summary(summary, i)
                        #train_writer.add_summary(train_summary, i)
                        
                    except tf.errors.OutOfRangeError:
                        break
                else:                
                    try:
        #                _, G_current,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out, target_disparity_out, gt_ds_out = sess.run(
                        train_summary, G_loss_trained,  output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out  = sess.run(
                            [   merged,
#                                G_opt,
                                G_loss,
                                out,
                                _disp_slice,
                                _d_gt_slice,
                                _out_diff,
                                _out_diff2,
                                _w_norm,
                                _out_wdiff2,
                                _cost1,
                                corr2d325,
        #                     target_disparity,
        #                     gt_ds
                            ],
                            feed_dict={lr:LR})
                        
                        # save all for now as a test
                        #train_writer.add_summary(summary, i)
                        #train_writer.add_summary(train_summary, i)
                        
                    except tf.errors.OutOfRangeError:
                        break
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
394 395 396 397 398
             
            # Test run
            else:

                try:
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
399
                    test_summary, G_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
400 401 402 403 404 405 406 407 408 409 410 411 412 413
                        [merged,
                         G_loss,
                         out,
                         _disp_slice,
                         _d_gt_slice,
                         _out_diff,
                         _out_diff2,
                         _w_norm,
                         _out_wdiff2,
                         _cost1,
                         corr2d325,
                         ],
                            feed_dict={lr:LR})
                    
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
414 415
                    #test_writer.add_summary(test_summary, i)
                    
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
416 417 418 419 420 421
                except tf.errors.OutOfRangeError:
                    break

            i+=1
            
#            print_time("%d:%d -> %f"%(epoch,i,G_current))
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
422 423 424 425
        train_writer.add_summary(train_summary, epoch)
        test_writer.add_summary(test_summary, epoch)
        
        print_time("%d:%d -> %f"%(epoch,i,G_loss_trained))
Oleg Dzhimiev's avatar
Oleg Dzhimiev committed
426 427 428 429 430 431 432 433
     
     # Close writers
    train_writer.close()
    test_writer.close()
#reports error: Exception ignored in: <bound method BaseSession.__del__ of <tensorflow.python.client.session.Session object at 0x7efc5f720ef0>> if there is no print before exit()

print("All done")
exit (0)