Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
motosat
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
motosat
Commits
56ca0c83
Commit
56ca0c83
authored
Sep 10, 2019
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dding polinomial approximation 2d
parent
6c5510bb
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
273 additions
and
1 deletion
+273
-1
Matrix.php
Matrix.php
+23
-0
PolynomialApproximation.php
PolynomialApproximation.php
+250
-1
No files found.
Matrix.php
View file @
56ca0c83
...
@@ -23,6 +23,11 @@ class Matrix
...
@@ -23,6 +23,11 @@ class Matrix
return
$this
->
M
;
return
$this
->
M
;
}
}
public
function
set
(
$i
,
$j
,
$v
){
$M
[
$i
][
$j
]
=
$v
;
}
public
function
getColumnPackedCopy
(){
public
function
getColumnPackedCopy
(){
$rows
=
sizeof
(
$this
->
M
);
$rows
=
sizeof
(
$this
->
M
);
$cols
=
sizeof
(
$this
->
M
[
0
]);
$cols
=
sizeof
(
$this
->
M
[
0
]);
...
@@ -82,6 +87,9 @@ class Matrix
...
@@ -82,6 +87,9 @@ class Matrix
}
}
public
function
plus
(
$B
)
{
public
function
plus
(
$B
)
{
if
(
$B
instanceof
Matrix
){
$B
=
$B
->
get
();
}
$R
=
$this
->
M
;
$R
=
$this
->
M
;
$rows
=
sizeof
(
$this
->
M
);
$rows
=
sizeof
(
$this
->
M
);
$cols
=
sizeof
(
$this
->
M
[
0
]);
$cols
=
sizeof
(
$this
->
M
[
0
]);
...
@@ -95,6 +103,21 @@ class Matrix
...
@@ -95,6 +103,21 @@ class Matrix
}
}
return
new
Matrix
(
$R
,
$this
->
Tol
);
return
new
Matrix
(
$R
,
$this
->
Tol
);
}
}
public
function
plusEquals
(
$B
){
if
(
$B
instanceof
Matrix
){
$B
=
$B
->
get
();
}
$rows
=
sizeof
(
$this
->
M
);
$cols
=
sizeof
(
$this
->
M
[
0
]);
if
((
$rows
!=
sizeof
(
$B
[
0
]))
||
(
$cols
!=
sizeof
(
$B
[
0
]))){
throw
new
Exception
(
'Dimensions mismatch.'
);
}
for
(
$i
=
0
;
$i
<
$rows
;
$i
++
)
{
for
(
$j
=
0
;
$j
<
$cols
;
$j
++
)
{
$this
->
M
[
$i
][
$j
]
+=
$B
[
$i
][
$j
];
}
}
}
public
function
print
(
$debugFile
=
null
,
$decimals
=
6
)
public
function
print
(
$debugFile
=
null
,
$decimals
=
6
)
...
...
PolynomialApproximation.php
View file @
56ca0c83
...
@@ -10,7 +10,7 @@ class PolynomialApproximation
...
@@ -10,7 +10,7 @@ class PolynomialApproximation
public
function
polynomialApproximation1d
(
$data
,
$N
){
public
function
polynomialApproximation1d
(
$data
,
$N
){
//$my_array = array_fill(0, $size_of_the_array, $some_data);
//$my_array = array_fill(0, $size_of_the_array, $some_data);
if
(
$this
->
debugFile
===
null
){
if
(
$this
->
debugFile
===
null
){
$this
->
debugLevel
=
1
;
$this
->
debugLevel
=
0
;
}
}
$S
=
array_fill
(
0
,
2
*
$N
+
1
,
0
);
// new double [2*N+1];
$S
=
array_fill
(
0
,
2
*
$N
+
1
,
0
);
// new double [2*N+1];
$SF
=
array_fill
(
0
,
$N
+
1
,
0
);
// new double [N+1];
$SF
=
array_fill
(
0
,
$N
+
1
,
0
);
// new double [N+1];
...
@@ -90,6 +90,255 @@ class PolynomialApproximation
...
@@ -90,6 +90,255 @@ class PolynomialApproximation
return
null
;
return
null
;
}
}
public
function
quadraticApproximation
(
$data
,
$forceLinear
=
false
,
// use linear approximation
$damping
=
null
,
$thresholdLin
=
1.0E-10
,
// threshold ratio of matrix determinant to norm for linear approximation (det too low - fail)
$thresholdQuad
=
1.0E-15
,
// threshold ratio of matrix determinant to norm for quadratic approximation (det too low - fail)
$debugLevel
=
1
){
if
(
$this
->
debugFile
===
null
){
$this
->
debugLevel
=
0
;
}
if
((
data
==
null
)
||
(
data
.
length
==
0
))
{
return
null
;
}
/* ix, iy - the location of the point with maximal value. We'll approximate the vicinity of that maximum using a
* second degree polynomial:
Z(x,y)~=A*x^2+B*y^2+C*x*y+D*x+E*y+F
by minimizing sum of squared differenceS00between the actual (Z(x,uy)) and approximated values.
and then find the maximum on the approximated surface. Here iS00the math:
Z(x,y)~=A*x^2+B*y^2+C*x*y+D*x+E*y+F
minimizing squared error, using W(x,y) aS00weight function
error=Sum(W(x,y)*((A*x^2+B*y^2+C*x*y+D*x+E*y+F)-Z(x,y))^2)
error=Sum(W(x,y)*(A^2*x^4 + 2*A*x^2*(B*y^2+C*x*y+D*x+E*y+F-Z(x,y)) +(...) )
0=derror/dA=Sum(W(x,y)*(2*A*x^4 + 2*x^2*(B*y^2+C*x*y+D*x+E*y+F-Z(x,y)))
0=Sum(W(x,y)*(A*x^4 + x^2*(B*y^2+C*x*y+D*x+E*y+F-Z(x,y)))
S40=Sum(W(x,y)*x^4), etc
(1) 0=A*S40 + B*S22 + C*S31 +D*S30 +E*S21 +F*S20 - SZ20
derror/dB:
error=Sum(W(x,y)*(B^2*y^4 + 2*B*y^2*(A*x^2+C*x*y+D*x+E*y+F-Z(x,y)) +(...) )
0=derror/dB=Sum(W(x,y)*(2*B*y^4 + 2*y^2*(A*x^2+C*x*y+D*x+E*y+F-Z(x,y)))
0=Sum(W(x,y)*(B*y^4 + y^2*(A*x^2+C*x*y+D*x+E*y+F-Z(x,y)))
(2) 0=B*S04 + A*S22 + C*S13 +D*S12 +E*S03 +F*SY2 - SZ02
(2) 0=A*S22 + B*S04 + C*S13 +D*S12 +E*S03 +F*SY2 - SZ02
derror/dC:
error=Sum(W(x,y)*(C^2*x^2*y^2 + 2*C*x*y*(A*x^2+B*y^2+D*x+E*y+F-Z(x,y)) +(...) )
0=derror/dC=Sum(W(x,y)*(2*C*x^2*y^2 + 2*x*y*(A*x^2+B*y^2+D*x+E*y+F-Z(x,y)) )
0=Sum(W(x,y)*(C*x^2*y^2 + x*y*(A*x^2+B*y^2+D*x+E*y+F-Z(x,y)) )
(3) 0= A*S31 + B*S13 + C*S22 + D*S21 + E*S12 + F*S11 - SZ11
derror/dD:
error=Sum(W(x,y)*(D^2*x^2 + 2*D*x*(A*x^2+B*y^2+C*x*y+E*y+F-Z(x,y)) +(...) )
0=derror/dD=Sum(W(x,y)*(2*D*x^2 + 2*x*(A*x^2+B*y^2+C*x*y+E*y+F-Z(x,y)) )
0=Sum(W(x,y)*(D*x^2 + x*(A*x^2+B*y^2+C*x*y+E*y+F-Z(x,y)) )
(4) 0= A*S30 + B*S12 + C*S21 + D*S20 + E*S11 + F*S10 - SZ10
derror/dE:
error=Sum(W(x,y)*(E^2*y^2 + 2*E*y*(A*x^2+B*y^2+C*x*y+D*x+F-Z(x,y)) +(...) )
0=derror/dE=Sum(W(x,y)*(2*E*y^2 + 2*y*(A*x^2+B*y^2+C*x*y+D*x+F-Z(x,y)) )
0=Sum(W(x,y)*(E*y^2 + y*(A*x^2+B*y^2+C*x*y+D*x+F-Z(x,y)) )
(5) 0= A*S21 + B*S03 + C*S12 + D*S11 + E*SY2 + F*SY - SZ01
derror/dF:
error=Sum(W(x,y)*(F^2 + 2*F*(A*x^2+B*y^2+C*x*y+D*x+E*y-Z(x,y)) +(...) )
0=derror/dF=Sum(W(x,y)*(2*F + 2*(A*x^2+B*y^2+C*x*y+D*x+E*y-Z(x,y)) )
0=Sum(W(x,y)*(F + (A*x^2+B*y^2+C*x*y+D*x+E*y-Z(x,y)) )
(6) 0= A*S20 + B*SY2 + C*S11 + D*S10 + E*SY + F*S00 - SZ00
(1) 0= A*S40 + B*S22 + C*S31 + D*S30 + E*S21 + F*S20 - SZ20
(2) 0= A*S22 + B*S04 + C*S13 + D*S12 + E*S03 + F*S02 - SZ02
(3) 0= A*S31 + B*S13 + C*S22 + D*S21 + E*S12 + F*S11 - SZ11
(4) 0= A*S30 + B*S12 + C*S21 + D*S20 + E*S11 + F*S10 - SZ10
(5) 0= A*S21 + B*S03 + C*S12 + D*S11 + E*S02 + F*S01 - SZ01
(6) 0= A*S20 + B*S02 + C*S11 + D*S10 + E*S01 + F*S00 - SZ00
*/
// Matrix mDampingLin = null;
// Matrix mDampingQuad = null;
if
(
$damping
!==
null
){
$mDampingLin
=
new
Matrix
(
Matrix
::
zeroMatrix
(
3
,
3
));
for
(
$i
=
0
;
$i
<
3
;
$i
++
){
$j
=
sizeof
(
$damping
)
+
$i
-
3
;
if
(
$j
>=
0
)
$mDampingLin
.
set
(
$i
,
$i
,
$damping
[
$j
]);
}
if
(
!
$forceLinear
)
{
$mDampingQuad
=
new
Matrix
(
Matrix
::
zeroMatrix
(
6
,
6
));
for
(
$i
=
0
;
$i
<
6
;
$i
++
){
$j
=
sizeof
(
$damping
)
+
$i
-
6
;
if
(
$j
>=
0
)
$mDampingQuad
.
set
(
$i
,
$i
,
$damping
[
$j
]);
}
}
}
$zDim
=
sizeof
(
$data
[
0
][
1
]);
// double w,z,x,x2,x3,x4,y,y2,y3,y4,wz;
// int i,j,
$n
=
0
;
$S00
=
0.0
;
$S10
=
0.0
;
$S01
=
0.0
;
$S20
=
0.0
;
$S11
=
0.0
;
$S02
=
0.0
;
$S30
=
0.0
;
$S21
=
0.0
;
$S12
=
0.0
;
$S03
=
0.0
;
$S40
=
0.0
;
$S31
=
0.0
;
$S22
=
0.0
;
$S13
=
0.0
;
$S04
=
0.0
;
$SZ00
=
array_fill
(
0
,
$zDim
,
0.0
);
$SZ01
=
array_fill
(
0
,
$zDim
,
0.0
);
$SZ10
=
array_fill
(
0
,
$zDim
,
0.0
);
$SZ11
=
array_fill
(
0
,
$zDim
,
0.0
);
$SZ02
=
array_fill
(
0
,
$zDim
,
0.0
);
$SZ20
=
array_fill
(
0
,
$zDim
,
0.0
);
$dataLength
=
sizeof
(
$data
);
for
(
$i
=
0
;
$i
<
$dataLength
;
$i
++
)
{
$w
=
(
sizeof
(
$data
[
$i
])
>
2
)
?
$data
[
$i
][
2
][
0
]
:
1.0
;
if
(
$w
>
0
)
{
$n
++
;
$x
=
$data
[
$i
][
0
][
0
];
$y
=
$data
[
$i
][
0
][
1
];
$x2
=
$x
*
$x
;
$y2
=
$y
*
$y
;
$S00
+=
$w
;
$S10
+=
$w
*
$x
;
$S01
+=
$w
*
$y
;
$S11
+=
$w
*
$x
*
$y
;
$S20
+=
$w
*
$x2
;
$S02
+=
$w
*
$y2
;
if
(
!
$forceLinear
)
{
$x3
=
$x2
*
$x
;
$x4
=
$x3
*
$x
;
$y3
=
$y2
*
$y
;
$y4
=
$y3
*
$y
;
$S30
+=
$w
*
$x3
;
$S21
+=
$w
*
$x2
*
$y
;
$S12
+=
$w
*
$x
*
$y2
;
$S03
+=
$w
*
$y3
;
$S40
+=
$w
*
$x4
;
$S31
+=
$w
*
$x3
*
$y
;
$S22
+=
$w
*
$x2
*
$y2
;
$S13
+=
$w
*
$x
*
$y3
;
$S04
+=
$w
*
$y4
;
}
for
(
$j
=
0
;
$j
<
$zDim
;
$j
++
)
{
$z
=
$data
[
$i
][
1
][
$j
];
$wz
=
$w
*
$z
;
$SZ00
[
$j
]
+=
$wz
;
$SZ10
[
$j
]
+=
$wz
*
$x
;
$SZ01
[
$j
]
+=
$wz
*
$y
;
if
(
!
$forceLinear
)
{
$SZ20
[
$j
]
+=
$wz
*
$x2
;
$SZ11
[
$j
]
+=
$wz
*
$x
*
$y
;
$SZ02
[
$j
]
+=
$wz
*
$y2
;
}
}
}
}
//need to decide if there is enough data for linear and quadratic
$mAarrayL
=
array
(
array
(
$S20
,
$S11
,
$S10
),
array
(
$S11
,
$S02
,
$S01
),
array
(
$S10
,
$S01
,
$S00
));
$mLin
=
new
Matrix
(
$mAarrayL
);
if
(
$mDampingLin
!==
null
){
$mLin
->
plusEquals
(
$mDampingLin
);
}
// TODO Maybe bypass determinant checks for damped ?
// if (debugLevel>3) System.out.println(">>> n="+n+" det_lin="+mLin.det()+" norm_lin="+normMatix(mAarrayL));
$nmL
=
normMatix
(
$mAarrayL
);
if
((
$nmL
==
0.0
)
||
(
abs
(
$mLin
.
det
())
/
$nmL
<
$thresholdLin
)){
// return average value for each channel
if
(
$S00
==
0.0
)
return
null
;
// not even average
$ABCDEF
=
Matrix
::
ZeroMatrix
(
zDim
,
3
);
for
(
$i
=
0
;
$i
<
$zDim
;
$i
++
)
{
$ABCDEF
[
$i
][
0
]
=
0.0
;
$ABCDEF
[
$i
][
1
]
=
0.0
;
$ABCDEF
[
$i
][
2
]
=
$SZ00
[
$i
]
/
$S00
;
}
return
$ABCDEF
;
}
$zAarrayL
=
array_fill
(
0
,
3
,
0.0
);
$ABCDEF
=
array_fill
(
0
,
$zDim
,
null
);
for
(
$i
=
0
;
$i
<
$zDim
;
$i
++
)
{
$zAarrayL
[
0
]
=
$SZ10
[
$i
];
$zAarrayL
[
1
]
=
$SZ01
[
$i
];
$zAarrayL
[
2
]
=
$SZ00
[
$i
];
$Z
=
new
Matrix
(
$zAarrayL
);
// ,3);
$ABCDEF
[
$i
]
=
$mLin
.
solve
(
$Z
)
.
getRowPackedCopy
();
}
if
(
forceLinear
)
return
ABCDEF
;
// quote try quadratic approximation
$mAarrayQ
=
array
(
array
(
$S40
,
$S22
,
$S31
,
$S30
,
$S21
,
$S20
),
array
(
$S22
,
$S04
,
$S13
,
$S12
,
$S03
,
$S02
),
array
(
$S31
,
$S13
,
$S22
,
$S21
,
$S12
,
$S11
),
array
(
$S30
,
$S12
,
$S21
,
$S20
,
$S11
,
$S10
),
array
(
$S21
,
$S03
,
$S12
,
$S11
,
$S02
,
$S01
),
array
(
$S20
,
$S02
,
$S11
,
$S10
,
$S01
,
$S00
));
$mQuad
=
new
Matrix
(
$mAarrayQ
);
if
(
isset
(
$mDampingQuad
)){
$mQuad
->
plusEquals
(
$mDampingQuad
);
}
// if (debugLevel>3) {
// System.out.println(" n="+n+" det_quad="+mQuad.det()+" norm_quad="+normMatix(mAarrayQ)+" data.length="+data.length);
// mQuad.print(10,5);
// }
$nmQ
=
normMatix
(
$mAarrayQ
);
if
((
$nmQ
==
0.0
)
||
(
abs
(
$mQuad
.
det
())
/
normMatix
(
$mAarrayQ
)
<
$thresholdQuad
))
{
// if (debugLevel>0) System.out.println("Using linear approximation, M.det()="+mQuad.det()+
// " normMatix(mAarrayQ)="+normMatix(mAarrayQ)+
// ", thresholdQuad="+thresholdQuad+
// ", nmQ="+nmQ+
// ", Math.abs(M.det())/normMatix(mAarrayQ)="+(Math.abs(mQuad.det())/normMatix(mAarrayQ))); //did not happen
return
$ABCDEF
;
// not enough data for the quadratic approximation, return linear
}
// double [] zAarrayQ={SZ20,SZ02,SZ11,SZ10,SZ01,SZ00};
$zAarrayQ
=
array_fill
(
0
,
6
,
0.0
);
for
(
$i
=
0
;
$i
<
$zDim
;
$i
++
)
{
$zAarrayQ
[
0
]
=
$SZ20
[
$i
];
$zAarrayQ
[
1
]
=
$SZ02
[
$i
];
$zAarrayQ
[
2
]
=
$SZ11
[
$i
];
$zAarrayQ
[
3
]
=
$SZ10
[
$i
];
$zAarrayQ
[
4
]
=
$SZ01
[
$i
];
$zAarrayQ
[
5
]
=
$SZ00
[
$i
];
$Z
=
new
Matrix
(
$zAarrayQ
);
// ,6);
$ABCDEF
[
i
]
=
$mQuad
.
solve
(
$Z
)
.
getRowPackedCopy
();
}
return
$ABCDEF
;
}
// calcualte "volume" made of the matrix row-vectors, placed orthogonally
// to be compared to determinant
public
function
normMatix
(
$a
)
{
$norm
=
1.0
;
for
(
$i
=
0
;
$i
<
sizeof
(
$a
);
$i
++
)
{
$d
=
0
;
for
(
$j
=
0
;
$j
<
sizeof
(
$a
[
$i
]);
$j
++
)
$d
+=
$a
[
$i
][
$j
]
*
$a
[
$i
][
$j
];
$norm
*=
sqrt
(
$d
);
}
return
$norm
;
}
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment