Commit df2ceddc authored by Oleg Dzhimiev's avatar Oleg Dzhimiev

assigned back raw hooks

parent 8fdd077f
// SPDX-License-Identifier: GPL-2.0
/*
* ARM PL353 NAND flash controller driver
*
* Copyright (C) 2017 Xilinx, Inc
* Author: Punnaiah chowdary kalluri <punnaiah@xilinx.com>
* Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
*
*/
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/pl353-smc.h>
#include <linux/clk.h>
#define PL353_NAND_DRIVER_NAME "pl353-nand"
/* NAND flash driver defines */
#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */
#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */
#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */
/* Flash memory controller operating parameters */
#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \
(0 << 5)) /* No Jumping */
/* AXI Address definitions */
#define START_CMD_SHIFT 3
#define END_CMD_SHIFT 11
#define END_CMD_VALID_SHIFT 20
#define ADDR_CYCLES_SHIFT 21
#define CLEAR_CS_SHIFT 21
#define ECC_LAST_SHIFT 10
#define COMMAND_PHASE (0 << 19)
#define DATA_PHASE BIT(19)
#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */
#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */
#define ONDIE_ECC_FEATURE_ADDR 0x90
#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ)
#define PL353_NAND_LAST_TRANSFER_LENGTH 4
#define PL353_NAND_ECC_VALID_SHIFT 24
#define PL353_NAND_ECC_VALID_MASK 0x40
#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF
#define PL353_ECC_BITS_BITOFF_MASK 0x7
#define PL353_ECC_BIT_MASK 0xFFF
#define PL353_TREA_MAX_VALUE 1
#define PL353_MAX_ECC_CHUNKS 4
#define PL353_MAX_ECC_BYTES 3
struct pl353_nfc_op {
u32 cmnds[4];
u32 end_cmd;
u32 addrs;
u32 len;
u32 naddrs;
u32 addr5;
u32 addr6;
unsigned int data_instr_idx;
unsigned int rdy_timeout_ms;
unsigned int rdy_delay_ns;
unsigned int cle_ale_delay_ns;
const struct nand_op_instr *data_instr;
};
/**
* struct pl353_nand_controller - Defines the NAND flash controller driver
* instance
* @chip: NAND chip information structure
* @dev: Parent device (used to print error messages)
* @regs: Virtual address of the NAND flash device
* @buf_addr: Virtual address of the NAND flash device for
* data read/writes
* @addr_cycles: Address cycles
* @mclk: Memory controller clock
* @buswidth: Bus width 8 or 16
*/
struct pl353_nand_controller {
struct nand_chip chip;
struct device *dev;
void __iomem *regs;
void __iomem *buf_addr;
u8 addr_cycles;
struct clk *mclk;
u32 buswidth;
};
static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * chip->ecc.bytes);
oobregion->length = chip->ecc.bytes;
return 0;
}
static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * chip->ecc.bytes) + 8;
oobregion->length = 8;
return 0;
}
static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
.ecc = pl353_ecc_ooblayout16_ecc,
.free = pl353_ecc_ooblayout16_free,
};
static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * chip->ecc.bytes) + 52;
oobregion->length = chip->ecc.bytes;
return 0;
}
static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * chip->ecc.bytes) + 2;
oobregion->length = 50;
return 0;
}
static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
.ecc = pl353_ecc_ooblayout64_ecc,
.free = pl353_ecc_ooblayout64_free,
};
/* Generic flash bbt decriptors */
static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = mirror_pattern
};
static void pl353_nfc_force_byte_access(struct nand_chip *chip,
bool force_8bit)
{
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
if (xnfc->buswidth == 8)
return;
if (force_8bit)
pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
else
pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
}
/**
* pl353_nand_read_data_op - read chip data into buffer
* @chip: Pointer to the NAND chip info structure
* @in: Pointer to the buffer to store read data
* @len: Number of bytes to read
* @force_8bit: Force 8-bit bus access
* Return: Always return zero
*/
static int pl353_nand_read_data_op(struct nand_chip *chip,
u8 *in,
unsigned int len, bool force_8bit)
{
int i;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
if (force_8bit)
pl353_nfc_force_byte_access(chip, true);
if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
IS_ALIGNED(len, sizeof(uint32_t))) || (!force_8bit)) {
u32 *ptr = (u32 *)in;
len /= 4;
for (i = 0; i < len; i++)
ptr[i] = readl(xnfc->buf_addr);
} else {
for (i = 0; i < len; i++)
in[i] = readb(xnfc->buf_addr);
}
if (force_8bit)
pl353_nfc_force_byte_access(chip, false);
return 0;
}
/**
* pl353_nand_write_buf - write buffer to chip
* @mtd: Pointer to the mtd info structure
* @buf: Pointer to the buffer to store write data
* @len: Number of bytes to write
* @force_8bit: Force 8-bit bus access
*/
static void pl353_nand_write_data_op(struct mtd_info *mtd, const u8 *buf,
int len, bool force_8bit)
{
int i;
struct nand_chip *chip = mtd_to_nand(mtd);
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
if (force_8bit)
pl353_nfc_force_byte_access(chip, true);
if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
IS_ALIGNED(len, sizeof(uint32_t))) || (!force_8bit)) {
u32 *ptr = (u32 *)buf;
len /= 4;
for (i = 0; i < len; i++)
writel(ptr[i], xnfc->buf_addr);
} else {
for (i = 0; i < len; i++)
writeb(buf[i], xnfc->buf_addr);
}
if (force_8bit)
pl353_nfc_force_byte_access(chip, false);
}
static int pl353_wait_for_ecc_done(void)
{
unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
do {
if (pl353_smc_ecc_is_busy())
cpu_relax();
else
break;
} while (!time_after_eq(jiffies, timeout));
if (time_after_eq(jiffies, timeout)) {
pr_err("%s timed out\n", __func__);
return -ETIMEDOUT;
}
return 0;
}
/**
* pl353_nand_calculate_hwecc - Calculate Hardware ECC
* @mtd: Pointer to the mtd_info structure
* @data: Pointer to the page data
* @ecc: Pointer to the ECC buffer where ECC data needs to be stored
*
* This function retrieves the Hardware ECC data from the controller and returns
* ECC data back to the MTD subsystem.
* It operates on a number of 512 byte blocks of NAND memory and can be
* programmed to store the ECC codes after the data in memory. For writes,
* the ECC is written to the spare area of the page. For reads, the result of
* a block ECC check are made available to the device driver.
*
* ------------------------------------------------------------------------
* | n * 512 blocks | extra | ecc | |
* | | block | codes | |
* ------------------------------------------------------------------------
*
* The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
* detection. It starts when a valid read or write command with a 512 byte
* aligned address is detected on the memory interface.
*
* Return: 0 on success or error value on failure
*/
static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
const u8 *data, u8 *ecc)
{
u32 ecc_value;
u8 chunk, ecc_byte, ecc_status;
for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
/* Read ECC value for each block */
ecc_value = pl353_smc_get_ecc_val(chunk);
ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
/* ECC value valid */
if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
ecc_byte++) {
/* Copy ECC bytes to MTD buffer */
*ecc = ~ecc_value & 0xFF;
ecc_value = ecc_value >> 8;
ecc++;
}
} else {
pr_warn("%s status failed\n", __func__);
return -1;
}
}
return 0;
}
/**
* pl353_nand_correct_data - ECC correction function
* @mtd: Pointer to the mtd_info structure
* @buf: Pointer to the page data
* @read_ecc: Pointer to the ECC value read from spare data area
* @calc_ecc: Pointer to the calculated ECC value
*
* This function corrects the ECC single bit errors & detects 2-bit errors.
*
* Return: 0 if no ECC errors found
* 1 if single bit error found and corrected.
* -1 if multiple uncorrectable ECC errors found.
*/
static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
unsigned char *read_ecc,
unsigned char *calc_ecc)
{
unsigned char bit_addr;
unsigned int byte_addr;
unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
unsigned short calc_ecc_lower, calc_ecc_upper;
read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
PL353_ECC_BIT_MASK;
read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
PL353_ECC_BIT_MASK;
calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
PL353_ECC_BIT_MASK;
calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
PL353_ECC_BIT_MASK;
ecc_odd = read_ecc_lower ^ calc_ecc_lower;
ecc_even = read_ecc_upper ^ calc_ecc_upper;
/* no error */
if (!ecc_odd && !ecc_even)
return 0;
if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
/* bits [11:3] of error code is byte offset */
byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
/* bits [2:0] of error code is bit offset */
bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
/* Toggling error bit */
buf[byte_addr] ^= (BIT(bit_addr));
return 1;
}
/* one error in parity */
if (hweight32(ecc_odd | ecc_even) == 1)
return 1;
/* Uncorrectable error */
return -1;
}
static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip,
int page, int column, int start_cmd, int end_cmd,
bool read)
{
unsigned long data_phase_addr;
u32 end_cmd_valid = 0;
unsigned long cmd_phase_addr = 0, cmd_phase_data = 0;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
end_cmd_valid = read ? 1 : 0;
cmd_phase_addr = (unsigned long __force)xnfc->regs +
((xnfc->addr_cycles
<< ADDR_CYCLES_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(COMMAND_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(start_cmd << START_CMD_SHIFT));
/* Get the data phase address */
data_phase_addr = (unsigned long __force)xnfc->regs +
((0x0 << CLEAR_CS_SHIFT) |
(0 << END_CMD_VALID_SHIFT) |
(DATA_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(0x0 << ECC_LAST_SHIFT));
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
if (chip->options & NAND_BUSWIDTH_16)
column /= 2;
cmd_phase_data = column;
if (mtd->writesize > PL353_NAND_ECC_SIZE) {
cmd_phase_data |= page << 16;
/* Another address cycle for devices > 128MiB */
if (chip->options & NAND_ROW_ADDR_3) {
writel_relaxed(cmd_phase_data,
(void __iomem * __force)cmd_phase_addr);
cmd_phase_data = (page >> 16);
}
} else {
cmd_phase_data |= page << 8;
}
writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
}
/**
* pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
* @mtd: Pointer to the mtd_info structure
* @chip: Pointer to the nand_chip structure
* @page: Page number to read
*
* Return: Always return zero
*/
static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
unsigned long data_phase_addr;
u8 *p;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long nand_offset = (unsigned long __force)xnfc->regs;
chip->pagebuf = -1;
if (mtd->writesize < PL353_NAND_ECC_SIZE)
return 0;
pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0,
NAND_CMD_READSTART, 1);
nand_wait_ready(mtd);
p = chip->oob_poi;
pl353_nand_read_data_op(chip, p,
(mtd->oobsize -
PL353_NAND_LAST_TRANSFER_LENGTH), false);
p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_CLEAR_CS;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
return 0;
}
/**
* pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @page: Page number to write
*
* Return: Zero on success and EIO on failure
*/
static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
const u8 *buf = chip->oob_poi;
unsigned long data_phase_addr;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long nand_offset = (unsigned long __force)xnfc->regs;
u32 addrcycles = 0;
chip->pagebuf = -1;
addrcycles = xnfc->addr_cycles;
pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN,
NAND_CMD_PAGEPROG, 0);
pl353_nand_write_data_op(mtd, buf,
(mtd->oobsize -
PL353_NAND_LAST_TRANSFER_LENGTH), false);
buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
pl353_nand_write_data_op(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
nand_wait_ready(mtd);
return 0;
}
/**
* pl353_nand_read_page_raw - [Intern] read raw page data without ecc
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the data buffer
* @oob_required: Caller requires OOB data read to chip->oob_poi
* @page: Page number to read
*
* Return: Always return zero
*/
static int pl353_nand_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
unsigned long data_phase_addr;
u8 *p;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long nand_offset = (unsigned long __force)xnfc->regs;
pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0,
NAND_CMD_READSTART, 1);
nand_wait_ready(mtd);
pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
p = chip->oob_poi;
pl353_nand_read_data_op(chip, p,
(mtd->oobsize -
PL353_NAND_LAST_TRANSFER_LENGTH), false);
p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_CLEAR_CS;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
return 0;
}
/**
* pl353_nand_write_page_raw - [Intern] raw page write function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the data buffer
* @oob_required: Caller requires OOB data read to chip->oob_poi
* @page: Page number to write
*
* Return: Always return zero
*/
static int pl353_nand_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
unsigned long data_phase_addr;
u8 *p;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long nand_offset = (unsigned long __force)xnfc->regs;
pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
NAND_CMD_PAGEPROG, 0);
pl353_nand_write_data_op(mtd, buf, mtd->writesize, false);
p = chip->oob_poi;
pl353_nand_write_data_op(mtd, p,
(mtd->oobsize -
PL353_NAND_LAST_TRANSFER_LENGTH), false);
p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
return 0;
}
/**
* nand_write_page_hwecc - Hardware ECC based page write function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the data buffer
* @oob_required: Caller requires OOB data read to chip->oob_poi
* @page: Page number to write
*
* This functions writes data and hardware generated ECC values in to the page.
*
* Return: Always return zero
*/
static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *oob_ptr;
const u8 *p = buf;
u32 ret;
unsigned long data_phase_addr;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long nand_offset = (unsigned long __force)xnfc->regs;
pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
NAND_CMD_PAGEPROG, 0);
for ( ; (eccsteps - 1); eccsteps--) {
pl353_nand_write_data_op(mtd, p, eccsize, false);
p += eccsize;
}
pl353_nand_write_data_op(mtd, p,
(eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
false);
p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
/* Set ECC Last bit to 1 */
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_ECC_LAST;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
/* Wait till the ECC operation is complete or timeout */
ret = pl353_wait_for_ecc_done();
if (ret)
dev_err(xnfc->dev, "ECC Timeout\n");
p = buf;
ret = chip->ecc.calculate(mtd, p, &ecc_calc[0]);
if (ret)
return ret;
/* Wait for ECC to be calculated and read the error values */
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
0, chip->ecc.total);
if (ret)
return ret;
/* Clear ECC last bit */
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr &= ~PL353_NAND_ECC_LAST;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
/* Write the spare area with ECC bytes */
oob_ptr = chip->oob_poi;
pl353_nand_write_data_op(mtd, oob_ptr,
(mtd->oobsize -
PL353_NAND_LAST_TRANSFER_LENGTH), false);
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
pl353_nand_write_data_op(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
nand_wait_ready(mtd);
return 0;
}
/**
* pl353_nand_read_page_hwecc - Hardware ECC based page read function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the buffer to store read data
* @oob_required: Caller requires OOB data read to chip->oob_poi
* @page: Page number to read
*
* This functions reads data and checks the data integrity by comparing
* hardware generated ECC values and read ECC values from spare area.
* There is a limitation in SMC controller, that we must set ECC LAST on
* last data phase access, to tell ECC block not to expect any data further.
* Ex: When number of ECC STEPS are 4, then till 3 we will write to flash
* using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
* 4bytes from page size, and will initiate a transfer. And the remaining 4 as
* one more transfer with ECC_LAST bit set in NAND data phase register to
* notify ECC block not to expect any more data. The last block should be align
* with end of 512 byte block. Because of this limitation, we are not using
* core routines.
*
* Return: 0 always and updates ECC operation status in to MTD structure
*/
static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
int i, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
u8 *p = buf;
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *ecc = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
u8 *oob_ptr;
u32 ret;
unsigned long data_phase_addr;
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long nand_offset = (unsigned long __force)xnfc->regs;
pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0,
NAND_CMD_READSTART, 1);
nand_wait_ready(mtd);
for ( ; (eccsteps - 1); eccsteps--) {
pl353_nand_read_data_op(chip, p, eccsize, false);
p += eccsize;
}
pl353_nand_read_data_op(chip, p,
(eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
false);
p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
/* Set ECC Last bit to 1 */
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_ECC_LAST;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
/* Wait till the ECC operation is complete or timeout */
ret = pl353_wait_for_ecc_done();
if (ret)
dev_err(xnfc->dev, "ECC Timeout\n");
/* Read the calculated ECC value */
p = buf;
ret = chip->ecc.calculate(mtd, p, &ecc_calc[0]);
if (ret)
return ret;
/* Clear ECC last bit */
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr &= ~PL353_NAND_ECC_LAST;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
/* Read the stored ECC value */
oob_ptr = chip->oob_poi;
pl353_nand_read_data_op(chip, oob_ptr,
(mtd->oobsize -
PL353_NAND_LAST_TRANSFER_LENGTH), false);
/* de-assert chip select */
data_phase_addr = (unsigned long __force)xnfc->buf_addr;
data_phase_addr -= nand_offset;
data_phase_addr |= PL353_NAND_CLEAR_CS;
data_phase_addr += nand_offset;
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
false);
ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
eccsteps = chip->ecc.steps;
p = buf;
/* Check ECC error for all blocks and correct if it is correctable */
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
stat = chip->ecc.correct(mtd, p, &ecc[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* pl353_nand_select_chip - Select the flash device
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
*
* This function is empty as the NAND controller handles chip select line
* internally based on the chip address passed in command and data phase.
*/
static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
{
}
/* NAND framework ->exec_op() hooks and related helpers */
static void pl353_nfc_parse_instructions(struct nand_chip *chip,
const struct nand_subop *subop,
struct pl353_nfc_op *nfc_op)
{
const struct nand_op_instr *instr = NULL;
unsigned int op_id, offset, naddrs;
int i, len;
const u8 *addrs;
memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
nfc_op->len = nand_subop_get_data_len(subop, op_id);
len = nand_subop_get_data_len(subop, op_id);
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (op_id)
nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
else
nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
nfc_op->cle_ale_delay_ns = instr->delay_ns;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
nfc_op->addrs = instr->ctx.addr.addrs[offset];
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
(8 * i);
}
if (naddrs >= 5)
nfc_op->addr5 = addrs[4];
if (naddrs >= 6)
nfc_op->addr6 = addrs[5];
nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
op_id);
nfc_op->cle_ale_delay_ns = instr->delay_ns;
break;
case NAND_OP_DATA_IN_INSTR:
nfc_op->data_instr = instr;
nfc_op->data_instr_idx = op_id;
break;
case NAND_OP_DATA_OUT_INSTR:
nfc_op->data_instr = instr;
nfc_op->data_instr_idx = op_id;
break;
case NAND_OP_WAITRDY_INSTR:
nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
nfc_op->rdy_delay_ns = instr->delay_ns;
break;
}
}
}
static void cond_delay(unsigned int ns)
{
if (!ns)
return;
if (ns < 10000)
ndelay(ns);
else
udelay(DIV_ROUND_UP(ns, 1000));
}
/**
* pl353_nand_exec_op_cmd - Send command to NAND device
* @chip: Pointer to the NAND chip info structure
* @subop: Pointer to array of instructions
* Return: Always return zero
*/
static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_op_instr *instr;
struct pl353_nfc_op nfc_op = {};
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
unsigned int op_id, len, offset;
bool reading;
pl353_nfc_parse_instructions(chip, subop, &nfc_op);
instr = nfc_op.data_instr;
op_id = nfc_op.data_instr_idx;
len = nand_subop_get_data_len(subop, op_id);
offset = nand_subop_get_data_start_off(subop, op_id);
pl353_smc_clr_nand_int();
/* Get the command phase address */
if (nfc_op.cmnds[1] != 0) {
if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
end_cmd_valid = 0;
else
end_cmd_valid = 1;
end_cmd = nfc_op.cmnds[1];
} else {
end_cmd = 0x0;
}
/*
* The SMC defines two phases of commands when transferring data to or
* from NAND flash.
* Command phase: Commands and optional address information are written
* to the NAND flash.The command and address can be associated with
* either a data phase operation to write to or read from the array,
* or a status/ID register transfer.
* Data phase: Data is either written to or read from the NAND flash.
* This data can be either data transferred to or from the array,
* or status/ID register information.
*/
cmd_phase_addr = (unsigned long __force)xnfc->regs +
((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(COMMAND_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(nfc_op.cmnds[0] << START_CMD_SHIFT));
/* Get the data phase address */
end_cmd_valid = 0;
data_phase_addr = (unsigned long __force)xnfc->regs +
((0x0 << CLEAR_CS_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(DATA_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(0x0 << ECC_LAST_SHIFT));
xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
/* Command phase AXI Read & Write */
if (nfc_op.naddrs >= 5) {
if (mtd->writesize > PL353_NAND_ECC_SIZE) {
cmd_phase_data = nfc_op.addrs;
/* Another address cycle for devices > 128MiB */
if (chip->options & NAND_ROW_ADDR_3) {
writel_relaxed(cmd_phase_data,
(void __iomem * __force)
cmd_phase_addr);
cmd_phase_data = nfc_op.addr5;
if (nfc_op.naddrs >= 6)
cmd_phase_data |= (nfc_op.addr6 << 8);
}
}
} else {
if (nfc_op.addrs != -1) {
int column = nfc_op.addrs;
/*
* Change read/write column, read id etc
* Adjust columns for 16 bit bus width
*/
if ((chip->options & NAND_BUSWIDTH_16) &&
(nfc_op.cmnds[0] == NAND_CMD_READ0 ||
nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
column >>= 1;
}
cmd_phase_data = column;
}
}
writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
if (!nfc_op.data_instr) {
if (nfc_op.rdy_timeout_ms)
nand_wait_ready(mtd);
return 0;
}
reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
if (!reading) {
pl353_nand_write_data_op(mtd, instr->ctx.data.buf.out,
len, instr->ctx.data.force_8bit);
if (nfc_op.rdy_timeout_ms)
nand_wait_ready(mtd);
cond_delay(nfc_op.rdy_delay_ns);
}
if (reading) {
cond_delay(nfc_op.rdy_delay_ns);
if (nfc_op.rdy_timeout_ms)
nand_wait_ready(mtd);
pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
instr->ctx.data.force_8bit);
}
return 0;
}
static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
(NAND_OP_PARSER_PATTERN
(pl353_nand_exec_op_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
NAND_OP_PARSER_PATTERN
(pl353_nand_exec_op_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
NAND_OP_PARSER_PATTERN
(pl353_nand_exec_op_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN
(pl353_nand_exec_op_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
NAND_OP_PARSER_PATTERN
(pl353_nand_exec_op_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
);
static int pl353_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
op, check_only);
}
/**
* pl353_nand_device_ready - Check device ready/busy line
* @mtd: Pointer to the mtd_info structure
*
* Return: 0 on busy or 1 on ready state
*/
static int pl353_nand_device_ready(struct mtd_info *mtd)
{
if (pl353_smc_get_nand_int_status_raw()) {
pl353_smc_clr_nand_int();
return 1;
}
return 0;
}
/**
* pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
* @mtd: Pointer to the mtd_info structure
* @ecc: Pointer to ECC control structure
* @ecc_mode: ondie ecc status
*
* This function initializes the ecc block and functional pointers as per the
* ecc mode
*
* Return: 0 on success or negative errno.
*/
static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
int ecc_mode)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
int err = 0;
ecc->read_oob = pl353_nand_read_oob;
ecc->write_oob = pl353_nand_write_oob;
if (ecc_mode == NAND_ECC_ON_DIE) {
ecc->write_page_raw = pl353_nand_write_page_raw;
ecc->read_page_raw = pl353_nand_read_page_raw;
/* Elphel, bring back old hook assignments otherwise
* the default ones from nand_micron.c are assigned:
* * micron_nand_read_page_on_die_ecc
* * micron_nand_write_page_on_die_ecc
* They enable/disable ondie ecc feature each call which
* is not optimal.
*/
ecc->read_page = pl353_nand_read_page_raw;
ecc->write_page = pl353_nand_write_page_raw;
pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
/*
* On-Die ECC spare bytes offset 8 is used for ECC codes
* Use the BBT pattern descriptors
*/
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
} else {
ecc->mode = NAND_ECC_HW;
/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
ecc->bytes = 3;
ecc->strength = 1;
ecc->calculate = pl353_nand_calculate_hwecc;
ecc->correct = pl353_nand_correct_data;
ecc->read_page = pl353_nand_read_page_hwecc;
ecc->size = PL353_NAND_ECC_SIZE;
ecc->read_page = pl353_nand_read_page_hwecc;
ecc->write_page = pl353_nand_write_page_hwecc;
pl353_smc_set_ecc_pg_size(mtd->writesize);
switch (mtd->writesize) {
case SZ_512:
case SZ_1K:
case SZ_2K:
pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
break;
default:
ecc->calculate = nand_calculate_ecc;
ecc->correct = nand_correct_data;
ecc->size = 256;
break;
}
if (mtd->oobsize == 16) {
mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
} else if (mtd->oobsize == 64) {
mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
} else {
err = -ENXIO;
dev_err(xnfc->dev, "Unsupported oob Layout\n");
}
}
return err;
}
static int pl353_setup_data_interface(struct mtd_info *mtd, int csline,
const struct nand_data_interface *conf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
const struct nand_sdr_timings *sdr;
u32 timings[7], mckperiodps;
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
/*
* SDR timings are given in pico-seconds while NFC timings must be
* expressed in NAND controller clock cycles.
*/
mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
mckperiodps *= 1000;
if (sdr->tRC_min <= 20000)
/*
* PL353 SMC needs one extra read cycle in SDR Mode 5
* This is not written anywhere in the datasheet but
* the results observed during testing.
*/
timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
else
timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
/*
* For all SDR modes, PL353 SMC needs tREA max value as 1,
* Results observed during testing.
*/
timings[2] = PL353_TREA_MAX_VALUE;
timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
pl353_smc_set_cycles(timings);
return 0;
}
static int pl353_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct pl353_nand_controller *xnfc =
container_of(chip, struct pl353_nand_controller, chip);
u32 ret;
if (chip->options & NAND_BUSWIDTH_16)
pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
if (mtd->writesize <= SZ_512)
xnfc->addr_cycles = 1;
else
xnfc->addr_cycles = 2;
if (chip->options & NAND_ROW_ADDR_3)
xnfc->addr_cycles += 3;
else
xnfc->addr_cycles += 2;
ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
if (ret) {
dev_err(xnfc->dev, "ECC init failed\n");
return ret;
}
if (!mtd->name) {
/*
* If the new bindings are used and the bootloader has not been
* updated to pass a new mtdparts parameter on the cmdline, you
* should define the following property in your NAND node, ie:
*
* label = "pl353-nand";
*
* This way, mtd->name will be set by the core when
* nand_set_flash_node() is called.
*/
mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
"%s", PL353_NAND_DRIVER_NAME);
if (!mtd->name) {
dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
return -ENOMEM;
}
}
return 0;
}
static const struct nand_controller_ops pl353_nand_controller_ops = {
.attach_chip = pl353_nand_attach_chip,
};
/**
* pl353_nand_probe - Probe method for the NAND driver
* @pdev: Pointer to the platform_device structure
*
* This function initializes the driver data structures and the hardware.
* The NAND driver has dependency with the pl353_smc memory controller
* driver for initializing the NAND timing parameters, bus width, ECC modes,
* control and status information.
*
* Return: 0 on success or error value on failure
*/
static int pl353_nand_probe(struct platform_device *pdev)
{
struct pl353_nand_controller *xnfc;
struct mtd_info *mtd;
struct nand_chip *chip;
struct resource *res;
struct device_node *np, *dn;
u32 ret, val;
xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
if (!xnfc)
return -ENOMEM;
xnfc->dev = &pdev->dev;
/* Map physical address of NAND flash */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
if (IS_ERR(xnfc->regs))
return PTR_ERR(xnfc->regs);
chip = &xnfc->chip;
mtd = nand_to_mtd(chip);
chip->exec_op = pl353_nfc_exec_op;
nand_set_controller_data(chip, xnfc);
mtd->priv = chip;
mtd->owner = THIS_MODULE;
nand_set_flash_node(chip, xnfc->dev->of_node);
/* Set the driver entry points for MTD */
chip->dev_ready = pl353_nand_device_ready;
chip->select_chip = pl353_nand_select_chip;
/* If we don't set this delay driver sets 20us by default */
np = of_get_next_parent(xnfc->dev->of_node);
xnfc->mclk = of_clk_get(np, 0);
if (IS_ERR(xnfc->mclk)) {
dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
return PTR_ERR(xnfc->mclk);
}
dn = nand_get_flash_node(chip);
ret = of_property_read_u32(dn, "nand-bus-width", &val);
if (ret)
val = 8;
xnfc->buswidth = val;
chip->chip_delay = 30;
/* Set the device option and flash width */
chip->options = NAND_BUSWIDTH_AUTO;
chip->bbt_options = NAND_BBT_USE_FLASH;
platform_set_drvdata(pdev, xnfc);
chip->setup_data_interface = pl353_setup_data_interface;
chip->dummy_controller.ops = &pl353_nand_controller_ops;
ret = nand_scan(mtd, 1);
if (ret) {
dev_err(xnfc->dev, "could not scan the nand chip\n");
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
nand_cleanup(chip);
return ret;
}
return 0;
}
/**
* pl353_nand_remove - Remove method for the NAND driver
* @pdev: Pointer to the platform_device structure
*
* This function is called if the driver module is being unloaded. It frees all
* resources allocated to the device.
*
* Return: 0 on success or error value on failure
*/
static int pl353_nand_remove(struct platform_device *pdev)
{
struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
/* Release resources, unregister device */
nand_release(mtd);
return 0;
}
/* Match table for device tree binding */
static const struct of_device_id pl353_nand_of_match[] = {
{ .compatible = "arm,pl353-nand-r2p1" },
{},
};
MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
/*
* pl353_nand_driver - This structure defines the NAND subsystem platform driver
*/
static struct platform_driver pl353_nand_driver = {
.probe = pl353_nand_probe,
.remove = pl353_nand_remove,
.driver = {
.name = PL353_NAND_DRIVER_NAME,
.of_match_table = pl353_nand_of_match,
},
};
module_platform_driver(pl353_nand_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
MODULE_LICENSE("GPL");
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment