Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
linux-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
linux-elphel
Commits
0be12c3f
Commit
0be12c3f
authored
Jul 30, 2019
by
Oleg Dzhimiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
borrowed file from 4.19 (current kernel is 4.14)
parent
f5b08ac7
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
822 additions
and
0 deletions
+822
-0
vfpmodule.c
src/arch/vfp/vfpmodule.c
+822
-0
No files found.
src/arch/vfp/vfpmodule.c
0 → 100644
View file @
0be12c3f
/*
* linux/arch/arm/vfp/vfpmodule.c
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/hardirq.h>
#include <linux/kernel.h>
#include <linux/notifier.h>
#include <linux/signal.h>
#include <linux/sched/signal.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/user.h>
#include <linux/export.h>
#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/system_info.h>
#include <asm/thread_notify.h>
#include <asm/vfp.h>
#include "vfpinstr.h"
#include "vfp.h"
/*
* Our undef handlers (in entry.S)
*/
asmlinkage
void
vfp_testing_entry
(
void
);
asmlinkage
void
vfp_support_entry
(
void
);
asmlinkage
void
vfp_null_entry
(
void
);
asmlinkage
void
(
*
vfp_vector
)(
void
)
=
vfp_null_entry
;
/*
* Dual-use variable.
* Used in startup: set to non-zero if VFP checks fail
* After startup, holds VFP architecture
*/
unsigned
int
VFP_arch
;
/*
* The pointer to the vfpstate structure of the thread which currently
* owns the context held in the VFP hardware, or NULL if the hardware
* context is invalid.
*
* For UP, this is sufficient to tell which thread owns the VFP context.
* However, for SMP, we also need to check the CPU number stored in the
* saved state too to catch migrations.
*/
union
vfp_state
*
vfp_current_hw_state
[
NR_CPUS
];
/*
* Is 'thread's most up to date state stored in this CPUs hardware?
* Must be called from non-preemptible context.
*/
static
bool
vfp_state_in_hw
(
unsigned
int
cpu
,
struct
thread_info
*
thread
)
{
#ifdef CONFIG_SMP
if
(
thread
->
vfpstate
.
hard
.
cpu
!=
cpu
)
return
false
;
#endif
return
vfp_current_hw_state
[
cpu
]
==
&
thread
->
vfpstate
;
}
/*
* Force a reload of the VFP context from the thread structure. We do
* this by ensuring that access to the VFP hardware is disabled, and
* clear vfp_current_hw_state. Must be called from non-preemptible context.
*/
static
void
vfp_force_reload
(
unsigned
int
cpu
,
struct
thread_info
*
thread
)
{
if
(
vfp_state_in_hw
(
cpu
,
thread
))
{
fmxr
(
FPEXC
,
fmrx
(
FPEXC
)
&
~
FPEXC_EN
);
vfp_current_hw_state
[
cpu
]
=
NULL
;
}
#ifdef CONFIG_SMP
thread
->
vfpstate
.
hard
.
cpu
=
NR_CPUS
;
#endif
}
/*
* Per-thread VFP initialization.
*/
static
void
vfp_thread_flush
(
struct
thread_info
*
thread
)
{
union
vfp_state
*
vfp
=
&
thread
->
vfpstate
;
unsigned
int
cpu
;
/*
* Disable VFP to ensure we initialize it first. We must ensure
* that the modification of vfp_current_hw_state[] and hardware
* disable are done for the same CPU and without preemption.
*
* Do this first to ensure that preemption won't overwrite our
* state saving should access to the VFP be enabled at this point.
*/
cpu
=
get_cpu
();
if
(
vfp_current_hw_state
[
cpu
]
==
vfp
)
vfp_current_hw_state
[
cpu
]
=
NULL
;
fmxr
(
FPEXC
,
fmrx
(
FPEXC
)
&
~
FPEXC_EN
);
put_cpu
();
memset
(
vfp
,
0
,
sizeof
(
union
vfp_state
));
vfp
->
hard
.
fpexc
=
FPEXC_EN
;
vfp
->
hard
.
fpscr
=
FPSCR_ROUND_NEAREST
;
#ifdef CONFIG_SMP
vfp
->
hard
.
cpu
=
NR_CPUS
;
#endif
}
static
void
vfp_thread_exit
(
struct
thread_info
*
thread
)
{
/* release case: Per-thread VFP cleanup. */
union
vfp_state
*
vfp
=
&
thread
->
vfpstate
;
unsigned
int
cpu
=
get_cpu
();
if
(
vfp_current_hw_state
[
cpu
]
==
vfp
)
vfp_current_hw_state
[
cpu
]
=
NULL
;
put_cpu
();
}
static
void
vfp_thread_copy
(
struct
thread_info
*
thread
)
{
struct
thread_info
*
parent
=
current_thread_info
();
vfp_sync_hwstate
(
parent
);
thread
->
vfpstate
=
parent
->
vfpstate
;
#ifdef CONFIG_SMP
thread
->
vfpstate
.
hard
.
cpu
=
NR_CPUS
;
#endif
}
/*
* When this function is called with the following 'cmd's, the following
* is true while this function is being run:
* THREAD_NOFTIFY_SWTICH:
* - the previously running thread will not be scheduled onto another CPU.
* - the next thread to be run (v) will not be running on another CPU.
* - thread->cpu is the local CPU number
* - not preemptible as we're called in the middle of a thread switch
* THREAD_NOTIFY_FLUSH:
* - the thread (v) will be running on the local CPU, so
* v === current_thread_info()
* - thread->cpu is the local CPU number at the time it is accessed,
* but may change at any time.
* - we could be preempted if tree preempt rcu is enabled, so
* it is unsafe to use thread->cpu.
* THREAD_NOTIFY_EXIT
* - we could be preempted if tree preempt rcu is enabled, so
* it is unsafe to use thread->cpu.
*/
static
int
vfp_notifier
(
struct
notifier_block
*
self
,
unsigned
long
cmd
,
void
*
v
)
{
struct
thread_info
*
thread
=
v
;
u32
fpexc
;
#ifdef CONFIG_SMP
unsigned
int
cpu
;
#endif
switch
(
cmd
)
{
case
THREAD_NOTIFY_SWITCH
:
fpexc
=
fmrx
(
FPEXC
);
#ifdef CONFIG_SMP
cpu
=
thread
->
cpu
;
/*
* On SMP, if VFP is enabled, save the old state in
* case the thread migrates to a different CPU. The
* restoring is done lazily.
*/
if
((
fpexc
&
FPEXC_EN
)
&&
vfp_current_hw_state
[
cpu
])
vfp_save_state
(
vfp_current_hw_state
[
cpu
],
fpexc
);
#endif
/*
* Always disable VFP so we can lazily save/restore the
* old state.
*/
fmxr
(
FPEXC
,
fpexc
&
~
FPEXC_EN
);
break
;
case
THREAD_NOTIFY_FLUSH
:
vfp_thread_flush
(
thread
);
break
;
case
THREAD_NOTIFY_EXIT
:
vfp_thread_exit
(
thread
);
break
;
case
THREAD_NOTIFY_COPY
:
vfp_thread_copy
(
thread
);
break
;
}
return
NOTIFY_DONE
;
}
static
struct
notifier_block
vfp_notifier_block
=
{
.
notifier_call
=
vfp_notifier
,
};
/*
* Raise a SIGFPE for the current process.
* sicode describes the signal being raised.
*/
static
void
vfp_raise_sigfpe
(
unsigned
int
sicode
,
struct
pt_regs
*
regs
)
{
siginfo_t
info
;
clear_siginfo
(
&
info
);
info
.
si_signo
=
SIGFPE
;
info
.
si_code
=
sicode
;
info
.
si_addr
=
(
void
__user
*
)(
instruction_pointer
(
regs
)
-
4
);
/*
* This is the same as NWFPE, because it's not clear what
* this is used for
*/
current
->
thread
.
error_code
=
0
;
current
->
thread
.
trap_no
=
6
;
send_sig_info
(
SIGFPE
,
&
info
,
current
);
}
static
void
vfp_panic
(
char
*
reason
,
u32
inst
)
{
int
i
;
pr_err
(
"VFP: Error: %s
\n
"
,
reason
);
pr_err
(
"VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x
\n
"
,
fmrx
(
FPEXC
),
fmrx
(
FPSCR
),
inst
);
for
(
i
=
0
;
i
<
32
;
i
+=
2
)
pr_err
(
"VFP: s%2u: 0x%08x s%2u: 0x%08x
\n
"
,
i
,
vfp_get_float
(
i
),
i
+
1
,
vfp_get_float
(
i
+
1
));
}
/*
* Process bitmask of exception conditions.
*/
static
void
vfp_raise_exceptions
(
u32
exceptions
,
u32
inst
,
u32
fpscr
,
struct
pt_regs
*
regs
)
{
int
si_code
=
0
;
pr_debug
(
"VFP: raising exceptions %08x
\n
"
,
exceptions
);
if
(
exceptions
==
VFP_EXCEPTION_ERROR
)
{
vfp_panic
(
"unhandled bounce"
,
inst
);
vfp_raise_sigfpe
(
FPE_FLTINV
,
regs
);
return
;
}
/*
* If any of the status flags are set, update the FPSCR.
* Comparison instructions always return at least one of
* these flags set.
*/
if
(
exceptions
&
(
FPSCR_N
|
FPSCR_Z
|
FPSCR_C
|
FPSCR_V
))
fpscr
&=
~
(
FPSCR_N
|
FPSCR_Z
|
FPSCR_C
|
FPSCR_V
);
fpscr
|=
exceptions
;
fmxr
(
FPSCR
,
fpscr
);
#define RAISE(stat,en,sig) \
if (exceptions & stat && fpscr & en) \
si_code = sig;
/*
* These are arranged in priority order, least to highest.
*/
RAISE
(
FPSCR_DZC
,
FPSCR_DZE
,
FPE_FLTDIV
);
RAISE
(
FPSCR_IXC
,
FPSCR_IXE
,
FPE_FLTRES
);
RAISE
(
FPSCR_UFC
,
FPSCR_UFE
,
FPE_FLTUND
);
RAISE
(
FPSCR_OFC
,
FPSCR_OFE
,
FPE_FLTOVF
);
RAISE
(
FPSCR_IOC
,
FPSCR_IOE
,
FPE_FLTINV
);
if
(
si_code
)
vfp_raise_sigfpe
(
si_code
,
regs
);
}
/*
* Emulate a VFP instruction.
*/
static
u32
vfp_emulate_instruction
(
u32
inst
,
u32
fpscr
,
struct
pt_regs
*
regs
)
{
u32
exceptions
=
VFP_EXCEPTION_ERROR
;
pr_debug
(
"VFP: emulate: INST=0x%08x SCR=0x%08x
\n
"
,
inst
,
fpscr
);
if
(
INST_CPRTDO
(
inst
))
{
if
(
!
INST_CPRT
(
inst
))
{
/*
* CPDO
*/
if
(
vfp_single
(
inst
))
{
exceptions
=
vfp_single_cpdo
(
inst
,
fpscr
);
}
else
{
exceptions
=
vfp_double_cpdo
(
inst
,
fpscr
);
}
}
else
{
/*
* A CPRT instruction can not appear in FPINST2, nor
* can it cause an exception. Therefore, we do not
* have to emulate it.
*/
}
}
else
{
/*
* A CPDT instruction can not appear in FPINST2, nor can
* it cause an exception. Therefore, we do not have to
* emulate it.
*/
}
return
exceptions
&
~
VFP_NAN_FLAG
;
}
/*
* Package up a bounce condition.
*/
void
VFP_bounce
(
u32
trigger
,
u32
fpexc
,
struct
pt_regs
*
regs
)
{
u32
fpscr
,
orig_fpscr
,
fpsid
,
exceptions
;
pr_debug
(
"VFP: bounce: trigger %08x fpexc %08x
\n
"
,
trigger
,
fpexc
);
/*
* At this point, FPEXC can have the following configuration:
*
* EX DEX IXE
* 0 1 x - synchronous exception
* 1 x 0 - asynchronous exception
* 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
* 0 0 1 - synchronous on VFP9 (non-standard subarch 1
* implementation), undefined otherwise
*
* Clear various bits and enable access to the VFP so we can
* handle the bounce.
*/
fmxr
(
FPEXC
,
fpexc
&
~
(
FPEXC_EX
|
FPEXC_DEX
|
FPEXC_FP2V
|
FPEXC_VV
|
FPEXC_TRAP_MASK
));
fpsid
=
fmrx
(
FPSID
);
orig_fpscr
=
fpscr
=
fmrx
(
FPSCR
);
/*
* Check for the special VFP subarch 1 and FPSCR.IXE bit case
*/
if
((
fpsid
&
FPSID_ARCH_MASK
)
==
(
1
<<
FPSID_ARCH_BIT
)
&&
(
fpscr
&
FPSCR_IXE
))
{
/*
* Synchronous exception, emulate the trigger instruction
*/
goto
emulate
;
}
if
(
fpexc
&
FPEXC_EX
)
{
#ifndef CONFIG_CPU_FEROCEON
/*
* Asynchronous exception. The instruction is read from FPINST
* and the interrupted instruction has to be restarted.
*/
trigger
=
fmrx
(
FPINST
);
regs
->
ARM_pc
-=
4
;
#endif
}
else
if
(
!
(
fpexc
&
FPEXC_DEX
))
{
/*
* Illegal combination of bits. It can be caused by an
* unallocated VFP instruction but with FPSCR.IXE set and not
* on VFP subarch 1.
*/
vfp_raise_exceptions
(
VFP_EXCEPTION_ERROR
,
trigger
,
fpscr
,
regs
);
goto
exit
;
}
/*
* Modify fpscr to indicate the number of iterations remaining.
* If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
* whether FPEXC.VECITR or FPSCR.LEN is used.
*/
if
(
fpexc
&
(
FPEXC_EX
|
FPEXC_VV
))
{
u32
len
;
len
=
fpexc
+
(
1
<<
FPEXC_LENGTH_BIT
);
fpscr
&=
~
FPSCR_LENGTH_MASK
;
fpscr
|=
(
len
&
FPEXC_LENGTH_MASK
)
<<
(
FPSCR_LENGTH_BIT
-
FPEXC_LENGTH_BIT
);
}
/*
* Handle the first FP instruction. We used to take note of the
* FPEXC bounce reason, but this appears to be unreliable.
* Emulate the bounced instruction instead.
*/
exceptions
=
vfp_emulate_instruction
(
trigger
,
fpscr
,
regs
);
if
(
exceptions
)
vfp_raise_exceptions
(
exceptions
,
trigger
,
orig_fpscr
,
regs
);
/*
* If there isn't a second FP instruction, exit now. Note that
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
*/
if
((
fpexc
&
(
FPEXC_EX
|
FPEXC_FP2V
))
!=
(
FPEXC_EX
|
FPEXC_FP2V
))
goto
exit
;
/*
* The barrier() here prevents fpinst2 being read
* before the condition above.
*/
barrier
();
trigger
=
fmrx
(
FPINST2
);
emulate:
exceptions
=
vfp_emulate_instruction
(
trigger
,
orig_fpscr
,
regs
);
if
(
exceptions
)
vfp_raise_exceptions
(
exceptions
,
trigger
,
orig_fpscr
,
regs
);
exit:
preempt_enable
();
}
static
void
vfp_enable
(
void
*
unused
)
{
u32
access
;
BUG_ON
(
preemptible
());
access
=
get_copro_access
();
/*
* Enable full access to VFP (cp10 and cp11)
*/
set_copro_access
(
access
|
CPACC_FULL
(
10
)
|
CPACC_FULL
(
11
));
}
/* Called by platforms on which we want to disable VFP because it may not be
* present on all CPUs within a SMP complex. Needs to be called prior to
* vfp_init().
*/
void
vfp_disable
(
void
)
{
if
(
VFP_arch
)
{
pr_debug
(
"%s: should be called prior to vfp_init
\n
"
,
__func__
);
return
;
}
VFP_arch
=
1
;
}
#ifdef CONFIG_CPU_PM
static
int
vfp_pm_suspend
(
void
)
{
struct
thread_info
*
ti
=
current_thread_info
();
u32
fpexc
=
fmrx
(
FPEXC
);
/* if vfp is on, then save state for resumption */
if
(
fpexc
&
FPEXC_EN
)
{
pr_debug
(
"%s: saving vfp state
\n
"
,
__func__
);
vfp_save_state
(
&
ti
->
vfpstate
,
fpexc
);
/* disable, just in case */
fmxr
(
FPEXC
,
fmrx
(
FPEXC
)
&
~
FPEXC_EN
);
}
else
if
(
vfp_current_hw_state
[
ti
->
cpu
])
{
#ifndef CONFIG_SMP
fmxr
(
FPEXC
,
fpexc
|
FPEXC_EN
);
vfp_save_state
(
vfp_current_hw_state
[
ti
->
cpu
],
fpexc
);
fmxr
(
FPEXC
,
fpexc
);
#endif
}
/* clear any information we had about last context state */
vfp_current_hw_state
[
ti
->
cpu
]
=
NULL
;
return
0
;
}
static
void
vfp_pm_resume
(
void
)
{
/* ensure we have access to the vfp */
vfp_enable
(
NULL
);
/* and disable it to ensure the next usage restores the state */
fmxr
(
FPEXC
,
fmrx
(
FPEXC
)
&
~
FPEXC_EN
);
}
static
int
vfp_cpu_pm_notifier
(
struct
notifier_block
*
self
,
unsigned
long
cmd
,
void
*
v
)
{
switch
(
cmd
)
{
case
CPU_PM_ENTER
:
vfp_pm_suspend
();
break
;
case
CPU_PM_ENTER_FAILED
:
case
CPU_PM_EXIT
:
vfp_pm_resume
();
break
;
}
return
NOTIFY_OK
;
}
static
struct
notifier_block
vfp_cpu_pm_notifier_block
=
{
.
notifier_call
=
vfp_cpu_pm_notifier
,
};
static
void
vfp_pm_init
(
void
)
{
cpu_pm_register_notifier
(
&
vfp_cpu_pm_notifier_block
);
}
#else
static
inline
void
vfp_pm_init
(
void
)
{
}
#endif
/* CONFIG_CPU_PM */
/*
* Ensure that the VFP state stored in 'thread->vfpstate' is up to date
* with the hardware state.
*/
void
vfp_sync_hwstate
(
struct
thread_info
*
thread
)
{
unsigned
int
cpu
=
get_cpu
();
if
(
vfp_state_in_hw
(
cpu
,
thread
))
{
u32
fpexc
=
fmrx
(
FPEXC
);
/*
* Save the last VFP state on this CPU.
*/
fmxr
(
FPEXC
,
fpexc
|
FPEXC_EN
);
vfp_save_state
(
&
thread
->
vfpstate
,
fpexc
|
FPEXC_EN
);
fmxr
(
FPEXC
,
fpexc
);
}
put_cpu
();
}
/* Ensure that the thread reloads the hardware VFP state on the next use. */
void
vfp_flush_hwstate
(
struct
thread_info
*
thread
)
{
unsigned
int
cpu
=
get_cpu
();
vfp_force_reload
(
cpu
,
thread
);
put_cpu
();
}
/*
* Save the current VFP state into the provided structures and prepare
* for entry into a new function (signal handler).
*/
int
vfp_preserve_user_clear_hwstate
(
struct
user_vfp
__user
*
ufp
,
struct
user_vfp_exc
__user
*
ufp_exc
)
{
struct
thread_info
*
thread
=
current_thread_info
();
struct
vfp_hard_struct
*
hwstate
=
&
thread
->
vfpstate
.
hard
;
int
err
=
0
;
/* Ensure that the saved hwstate is up-to-date. */
vfp_sync_hwstate
(
thread
);
/*
* Copy the floating point registers. There can be unused
* registers see asm/hwcap.h for details.
*/
err
|=
__copy_to_user
(
&
ufp
->
fpregs
,
&
hwstate
->
fpregs
,
sizeof
(
hwstate
->
fpregs
));
/*
* Copy the status and control register.
*/
__put_user_error
(
hwstate
->
fpscr
,
&
ufp
->
fpscr
,
err
);
/*
* Copy the exception registers.
*/
__put_user_error
(
hwstate
->
fpexc
,
&
ufp_exc
->
fpexc
,
err
);
__put_user_error
(
hwstate
->
fpinst
,
&
ufp_exc
->
fpinst
,
err
);
__put_user_error
(
hwstate
->
fpinst2
,
&
ufp_exc
->
fpinst2
,
err
);
if
(
err
)
return
-
EFAULT
;
/* Ensure that VFP is disabled. */
vfp_flush_hwstate
(
thread
);
/*
* As per the PCS, clear the length and stride bits for function
* entry.
*/
hwstate
->
fpscr
&=
~
(
FPSCR_LENGTH_MASK
|
FPSCR_STRIDE_MASK
);
return
0
;
}
/* Sanitise and restore the current VFP state from the provided structures. */
int
vfp_restore_user_hwstate
(
struct
user_vfp
*
ufp
,
struct
user_vfp_exc
*
ufp_exc
)
{
struct
thread_info
*
thread
=
current_thread_info
();
struct
vfp_hard_struct
*
hwstate
=
&
thread
->
vfpstate
.
hard
;
unsigned
long
fpexc
;
/* Disable VFP to avoid corrupting the new thread state. */
vfp_flush_hwstate
(
thread
);
/*
* Copy the floating point registers. There can be unused
* registers see asm/hwcap.h for details.
*/
memcpy
(
&
hwstate
->
fpregs
,
&
ufp
->
fpregs
,
sizeof
(
hwstate
->
fpregs
));
/*
* Copy the status and control register.
*/
hwstate
->
fpscr
=
ufp
->
fpscr
;
/*
* Sanitise and restore the exception registers.
*/
fpexc
=
ufp_exc
->
fpexc
;
/* Ensure the VFP is enabled. */
fpexc
|=
FPEXC_EN
;
/* Ensure FPINST2 is invalid and the exception flag is cleared. */
fpexc
&=
~
(
FPEXC_EX
|
FPEXC_FP2V
);
hwstate
->
fpexc
=
fpexc
;
hwstate
->
fpinst
=
ufp_exc
->
fpinst
;
hwstate
->
fpinst2
=
ufp_exc
->
fpinst2
;
return
0
;
}
/*
* VFP hardware can lose all context when a CPU goes offline.
* As we will be running in SMP mode with CPU hotplug, we will save the
* hardware state at every thread switch. We clear our held state when
* a CPU has been killed, indicating that the VFP hardware doesn't contain
* a threads VFP state. When a CPU starts up, we re-enable access to the
* VFP hardware. The callbacks below are called on the CPU which
* is being offlined/onlined.
*/
static
int
vfp_dying_cpu
(
unsigned
int
cpu
)
{
vfp_current_hw_state
[
cpu
]
=
NULL
;
return
0
;
}
static
int
vfp_starting_cpu
(
unsigned
int
unused
)
{
vfp_enable
(
NULL
);
return
0
;
}
void
vfp_kmode_exception
(
void
)
{
/*
* If we reach this point, a floating point exception has been raised
* while running in kernel mode. If the NEON/VFP unit was enabled at the
* time, it means a VFP instruction has been issued that requires
* software assistance to complete, something which is not currently
* supported in kernel mode.
* If the NEON/VFP unit was disabled, and the location pointed to below
* is properly preceded by a call to kernel_neon_begin(), something has
* caused the task to be scheduled out and back in again. In this case,
* rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
* be helpful in localizing the problem.
*/
if
(
fmrx
(
FPEXC
)
&
FPEXC_EN
)
pr_crit
(
"BUG: unsupported FP instruction in kernel mode
\n
"
);
else
pr_crit
(
"BUG: FP instruction issued in kernel mode with FP unit disabled
\n
"
);
}
#ifdef CONFIG_KERNEL_MODE_NEON
/*
* Kernel-side NEON support functions
*/
void
kernel_neon_begin
(
void
)
{
struct
thread_info
*
thread
=
current_thread_info
();
unsigned
int
cpu
;
u32
fpexc
;
/*
* Kernel mode NEON is only allowed outside of interrupt context
* with preemption disabled. This will make sure that the kernel
* mode NEON register contents never need to be preserved.
*/
BUG_ON
(
in_interrupt
());
cpu
=
get_cpu
();
fpexc
=
fmrx
(
FPEXC
)
|
FPEXC_EN
;
fmxr
(
FPEXC
,
fpexc
);
/*
* Save the userland NEON/VFP state. Under UP,
* the owner could be a task other than 'current'
*/
if
(
vfp_state_in_hw
(
cpu
,
thread
))
vfp_save_state
(
&
thread
->
vfpstate
,
fpexc
);
#ifndef CONFIG_SMP
else
if
(
vfp_current_hw_state
[
cpu
]
!=
NULL
)
vfp_save_state
(
vfp_current_hw_state
[
cpu
],
fpexc
);
#endif
vfp_current_hw_state
[
cpu
]
=
NULL
;
}
EXPORT_SYMBOL
(
kernel_neon_begin
);
void
kernel_neon_end
(
void
)
{
/* Disable the NEON/VFP unit. */
fmxr
(
FPEXC
,
fmrx
(
FPEXC
)
&
~
FPEXC_EN
);
put_cpu
();
}
EXPORT_SYMBOL
(
kernel_neon_end
);
#endif
/* CONFIG_KERNEL_MODE_NEON */
/*
* VFP support code initialisation.
*/
static
int
__init
vfp_init
(
void
)
{
unsigned
int
vfpsid
;
unsigned
int
cpu_arch
=
cpu_architecture
();
/*
* Enable the access to the VFP on all online CPUs so the
* following test on FPSID will succeed.
*/
if
(
cpu_arch
>=
CPU_ARCH_ARMv6
)
on_each_cpu
(
vfp_enable
,
NULL
,
1
);
/*
* First check that there is a VFP that we can use.
* The handler is already setup to just log calls, so
* we just need to read the VFPSID register.
*/
vfp_vector
=
vfp_testing_entry
;
barrier
();
vfpsid
=
fmrx
(
FPSID
);
barrier
();
vfp_vector
=
vfp_null_entry
;
pr_info
(
"VFP support v0.3: "
);
if
(
VFP_arch
)
{
pr_cont
(
"not present
\n
"
);
return
0
;
/* Extract the architecture on CPUID scheme */
}
else
if
((
read_cpuid_id
()
&
0x000f0000
)
==
0x000f0000
)
{
VFP_arch
=
vfpsid
&
FPSID_CPUID_ARCH_MASK
;
VFP_arch
>>=
FPSID_ARCH_BIT
;
/*
* Check for the presence of the Advanced SIMD
* load/store instructions, integer and single
* precision floating point operations. Only check
* for NEON if the hardware has the MVFR registers.
*/
if
(
IS_ENABLED
(
CONFIG_NEON
)
&&
(
fmrx
(
MVFR1
)
&
0x000fff00
)
==
0x00011100
)
elf_hwcap
|=
HWCAP_NEON
;
if
(
IS_ENABLED
(
CONFIG_VFPv3
))
{
u32
mvfr0
=
fmrx
(
MVFR0
);
if
(((
mvfr0
&
MVFR0_DP_MASK
)
>>
MVFR0_DP_BIT
)
==
0x2
||
((
mvfr0
&
MVFR0_SP_MASK
)
>>
MVFR0_SP_BIT
)
==
0x2
)
{
elf_hwcap
|=
HWCAP_VFPv3
;
/*
* Check for VFPv3 D16 and VFPv4 D16. CPUs in
* this configuration only have 16 x 64bit
* registers.
*/
if
((
mvfr0
&
MVFR0_A_SIMD_MASK
)
==
1
)
/* also v4-D16 */
elf_hwcap
|=
HWCAP_VFPv3D16
;
else
elf_hwcap
|=
HWCAP_VFPD32
;
}
if
((
fmrx
(
MVFR1
)
&
0xf0000000
)
==
0x10000000
)
elf_hwcap
|=
HWCAP_VFPv4
;
}
/* Extract the architecture version on pre-cpuid scheme */
}
else
{
if
(
vfpsid
&
FPSID_NODOUBLE
)
{
pr_cont
(
"no double precision support
\n
"
);
return
0
;
}
VFP_arch
=
(
vfpsid
&
FPSID_ARCH_MASK
)
>>
FPSID_ARCH_BIT
;
}
cpuhp_setup_state_nocalls
(
CPUHP_AP_ARM_VFP_STARTING
,
"arm/vfp:starting"
,
vfp_starting_cpu
,
vfp_dying_cpu
);
vfp_vector
=
vfp_support_entry
;
thread_register_notifier
(
&
vfp_notifier_block
);
vfp_pm_init
();
/*
* We detected VFP, and the support code is
* in place; report VFP support to userspace.
*/
elf_hwcap
|=
HWCAP_VFP
;
pr_cont
(
"implementor %02x architecture %d part %02x variant %x rev %x
\n
"
,
(
vfpsid
&
FPSID_IMPLEMENTER_MASK
)
>>
FPSID_IMPLEMENTER_BIT
,
VFP_arch
,
(
vfpsid
&
FPSID_PART_MASK
)
>>
FPSID_PART_BIT
,
(
vfpsid
&
FPSID_VARIANT_MASK
)
>>
FPSID_VARIANT_BIT
,
(
vfpsid
&
FPSID_REV_MASK
)
>>
FPSID_REV_BIT
);
return
0
;
}
core_initcall
(
vfp_init
);
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment