/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtx_compatibility /// @file glm/gtx/compatibility.hpp /// @date 2007-01-24 / 2011-06-07 /// @author Christophe Riccio /// /// @see core (dependence) /// @see gtc_half_float (dependence) /// /// @defgroup gtx_compatibility GLM_GTX_compatibility /// @ingroup gtx /// /// @brief Provide functions to increase the compatibility with Cg and HLSL languages /// /// <glm/gtx/compatibility.hpp> need to be included to use these functionalities. /////////////////////////////////////////////////////////////////////////////////// #ifndef GLM_GTX_compatibility #define GLM_GTX_compatibility GLM_VERSION // Dependency: #include "../glm.hpp" #include "../gtc/half_float.hpp" #include "../gtc/quaternion.hpp" #if(defined(GLM_MESSAGES) && !defined(glm_ext)) # pragma message("GLM: GLM_GTX_compatibility extension included") #endif #if(GLM_COMPILER & GLM_COMPILER_VC) # include <cfloat> #elif(GLM_COMPILER & GLM_COMPILER_GCC) # include <cmath> # if(GLM_PLATFORM & GLM_PLATFORM_ANDROID) # undef isfinite # endif #endif//GLM_COMPILER namespace glm { /// @addtogroup gtx_compatibility /// @{ template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec2<T> lerp(const detail::tvec2<T>& x, const detail::tvec2<T>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> lerp(const detail::tvec3<T>& x, const detail::tvec3<T>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec4<T> lerp(const detail::tvec4<T>& x, const detail::tvec4<T>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec2<T> lerp(const detail::tvec2<T>& x, const detail::tvec2<T>& y, const detail::tvec2<T>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> lerp(const detail::tvec3<T>& x, const detail::tvec3<T>& y, const detail::tvec3<T>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec4<T> lerp(const detail::tvec4<T>& x, const detail::tvec4<T>& y, const detail::tvec4<T>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T> const & x, detail::tquat<T> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions. template <typename T> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec2<T> saturate(const detail::tvec2<T>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> saturate(const detail::tvec3<T>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec4<T> saturate(const detail::tvec4<T>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec2<T> atan2(const detail::tvec2<T>& x, const detail::tvec2<T>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> atan2(const detail::tvec3<T>& x, const detail::tvec3<T>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) template <typename T> GLM_FUNC_QUALIFIER detail::tvec4<T> atan2(const detail::tvec4<T>& x, const detail::tvec4<T>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) template <typename genType> bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) template <typename valType> detail::tvec2<bool> isfinite(const detail::tvec2<valType>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) template <typename valType> detail::tvec3<bool> isfinite(const detail::tvec3<valType>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) template <typename valType> detail::tvec4<bool> isfinite(const detail::tvec4<valType>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tvec2<bool> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension) typedef detail::tvec3<bool> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension) typedef detail::tvec4<bool> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension) typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension) typedef detail::tmat2x2<bool> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x3<bool> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x4<bool> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x2<bool> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x3<bool> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x4<bool> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x2<bool> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x3<bool> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x4<bool> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tvec2<int> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension) typedef detail::tvec3<int> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension) typedef detail::tvec4<int> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension) typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tmat2x2<int> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x3<int> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x4<int> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x2<int> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x3<int> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x4<int> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x2<int> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x3<int> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x4<int> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::half half1; //!< \brief half-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tvec2<detail::half> half2; //!< \brief half-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) typedef detail::tvec3<detail::half> half3; //!< \brief half-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) typedef detail::tvec4<detail::half> half4; //!< \brief half-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) typedef detail::half half1x1; //!< \brief half-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tmat2x2<detail::half> half2x2; //!< \brief half-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x3<detail::half> half2x3; //!< \brief half-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x4<detail::half> half2x4; //!< \brief half-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x2<detail::half> half3x2; //!< \brief half-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x3<detail::half> half3x3; //!< \brief half-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x4<detail::half> half3x4; //!< \brief half-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x2<detail::half> half4x2; //!< \brief half-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x3<detail::half> half4x3; //!< \brief half-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x4<detail::half> half4x4; //!< \brief half-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tvec2<float> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) typedef detail::tvec3<float> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) typedef detail::tvec4<float> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tmat2x2<float> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x3<float> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x4<float> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x2<float> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x3<float> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x4<float> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x2<float> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x3<float> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x4<float> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tvec2<double> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) typedef detail::tvec3<double> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) typedef detail::tvec4<double> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) typedef detail::tmat2x2<double> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x3<double> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat2x4<double> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x2<double> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x3<double> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat3x4<double> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x2<double> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x3<double> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) typedef detail::tmat4x4<double> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) /// @} }//namespace glm #include "compatibility.inl" #endif//GLM_GTX_compatibility