/* Copyright 2008 Intel Corporation Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). */ #ifndef BOOST_POLYGON_POLYGON_90_TOUCH_HPP #define BOOST_POLYGON_POLYGON_90_TOUCH_HPP namespace boost { namespace polygon{ template <typename Unit> struct touch_90_operation { typedef interval_data<Unit> Interval; class TouchScanEvent { private: typedef std::map<Unit, std::set<int> > EventData; EventData eventData_; public: // The TouchScanEvent::iterator is a lazy algorithm that accumulates // polygon ids in a set as it is incremented through the // scan event data structure. // The iterator provides a forward iterator semantic only. class iterator { private: typename EventData::const_iterator itr_; std::pair<Interval, std::set<int> > ivlIds_; bool incremented_; public: inline iterator() : itr_(), ivlIds_(), incremented_(false) {} inline iterator(typename EventData::const_iterator itr, Unit prevPos, Unit curPos, const std::set<int>& ivlIds) : itr_(itr), ivlIds_(), incremented_(false) { ivlIds_.second = ivlIds; ivlIds_.first = Interval(prevPos, curPos); } inline iterator(const iterator& that) : itr_(), ivlIds_(), incremented_(false) { (*this) = that; } inline iterator& operator=(const iterator& that) { itr_ = that.itr_; ivlIds_.first = that.ivlIds_.first; ivlIds_.second = that.ivlIds_.second; incremented_ = that.incremented_; return *this; } inline bool operator==(const iterator& that) { return itr_ == that.itr_; } inline bool operator!=(const iterator& that) { return itr_ != that.itr_; } inline iterator& operator++() { //std::cout << "increment\n"; //std::cout << "state\n"; //for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) { // std::cout << (*itr) << " "; //} std::cout << std::endl; //std::cout << "update\n"; for(std::set<int>::const_iterator itr = (*itr_).second.begin(); itr != (*itr_).second.end(); ++itr) { //std::cout << (*itr) << " "; std::set<int>::iterator lb = ivlIds_.second.find(*itr); if(lb != ivlIds_.second.end()) { ivlIds_.second.erase(lb); } else { ivlIds_.second.insert(*itr); } } //std::cout << std::endl; //std::cout << "new state\n"; //for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) { // std::cout << (*itr) << " "; //} std::cout << std::endl; ++itr_; //ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first); incremented_ = true; return *this; } inline const iterator operator++(int){ iterator tmpItr(*this); ++(*this); return tmpItr; } inline std::pair<Interval, std::set<int> >& operator*() { if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first); incremented_ = false; if(ivlIds_.second.empty())(++(*this)); if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first); incremented_ = false; return ivlIds_; } }; inline TouchScanEvent() : eventData_() {} template<class iT> inline TouchScanEvent(iT begin, iT end) : eventData_() { for( ; begin != end; ++begin){ insert(*begin); } } inline TouchScanEvent(const TouchScanEvent& that) : eventData_(that.eventData_) {} inline TouchScanEvent& operator=(const TouchScanEvent& that){ eventData_ = that.eventData_; return *this; } //Insert an interval polygon id into the EventData inline void insert(const std::pair<Interval, int>& intervalId){ insert(intervalId.first.low(), intervalId.second); insert(intervalId.first.high(), intervalId.second); } //Insert an position and polygon id into EventData inline void insert(Unit pos, int id) { typename EventData::iterator lb = eventData_.lower_bound(pos); if(lb != eventData_.end() && lb->first == pos) { std::set<int>& mr (lb->second); std::set<int>::iterator mri = mr.find(id); if(mri == mr.end()) { mr.insert(id); } else { mr.erase(id); } } else { lb = eventData_.insert(lb, std::pair<Unit, std::set<int> >(pos, std::set<int>())); (*lb).second.insert(id); } } //merge this scan event with that by inserting its data inline void insert(const TouchScanEvent& that){ typename EventData::const_iterator itr; for(itr = that.eventData_.begin(); itr != that.eventData_.end(); ++itr) { eventData_[(*itr).first].insert(itr->second.begin(), itr->second.end()); } } //Get the begin iterator over event data inline iterator begin() const { //std::cout << "begin\n"; if(eventData_.empty()) return end(); typename EventData::const_iterator itr = eventData_.begin(); Unit pos = itr->first; const std::set<int>& idr = itr->second; ++itr; return iterator(itr, pos, itr->first, idr); } //Get the end iterator over event data inline iterator end() const { return iterator(eventData_.end(), 0, 0, std::set<int>()); } inline void clear() { eventData_.clear(); } inline Interval extents() const { if(eventData_.empty()) return Interval(); return Interval((*(eventData_.begin())).first, (*(eventData_.rbegin())).first); } }; //declaration of a map of scan events by coordinate value used to store all the //polygon data for a single layer input into the scanline algorithm typedef std::pair<std::map<Unit, TouchScanEvent>, std::map<Unit, TouchScanEvent> > TouchSetData; class TouchOp { public: typedef std::map<Unit, std::set<int> > ScanData; typedef std::pair<Unit, std::set<int> > ElementType; protected: ScanData scanData_; typename ScanData::iterator nextItr_; public: inline TouchOp () : scanData_(), nextItr_() { nextItr_ = scanData_.end(); } inline TouchOp (const TouchOp& that) : scanData_(that.scanData_), nextItr_() { nextItr_ = scanData_.begin(); } inline TouchOp& operator=(const TouchOp& that); //moves scanline forward inline void advanceScan() { nextItr_ = scanData_.begin(); } //proceses the given interval and std::set<int> data //the output data structre is a graph, the indicies in the vector correspond to graph nodes, //the integers in the set are vector indicies and are the nodes with which that node shares an edge template <typename graphT> inline void processInterval(graphT& outputContainer, Interval ivl, const std::set<int>& ids, bool leadingEdge) { //print(); typename ScanData::iterator lowItr = lookup_(ivl.low()); typename ScanData::iterator highItr = lookup_(ivl.high()); //std::cout << "Interval: " << ivl << std::endl; //for(std::set<int>::const_iterator itr = ids.begin(); itr != ids.end(); ++itr) // std::cout << (*itr) << " "; //std::cout << std::endl; //add interval to scan data if it is past the end if(lowItr == scanData_.end()) { //std::cout << "case0" << std::endl; lowItr = insert_(ivl.low(), ids); evaluateBorder_(outputContainer, ids, ids); highItr = insert_(ivl.high(), std::set<int>()); return; } //ensure that highItr points to the end of the ivl if(highItr == scanData_.end() || (*highItr).first > ivl.high()) { //std::cout << "case1" << std::endl; //std::cout << highItr->first << std::endl; std::set<int> value = std::set<int>(); if(highItr != scanData_.begin()) { --highItr; //std::cout << highItr->first << std::endl; //std::cout << "high set size " << highItr->second.size() << std::endl; value = highItr->second; } nextItr_ = highItr; highItr = insert_(ivl.high(), value); } else { //evaluate border with next higher interval //std::cout << "case1a" << std::endl; if(leadingEdge)evaluateBorder_(outputContainer, highItr->second, ids); } //split the low interval if needed if(lowItr->first > ivl.low()) { //std::cout << "case2" << std::endl; if(lowItr != scanData_.begin()) { //std::cout << "case3" << std::endl; --lowItr; nextItr_ = lowItr; //std::cout << lowItr->first << " " << lowItr->second.size() << std::endl; lowItr = insert_(ivl.low(), lowItr->second); } else { //std::cout << "case4" << std::endl; nextItr_ = lowItr; lowItr = insert_(ivl.low(), std::set<int>()); } } else { //evaluate border with next higher interval //std::cout << "case2a" << std::endl; typename ScanData::iterator nextLowerItr = lowItr; if(leadingEdge && nextLowerItr != scanData_.begin()){ --nextLowerItr; evaluateBorder_(outputContainer, nextLowerItr->second, ids); } } //std::cout << "low: " << lowItr->first << " high: " << highItr->first << std::endl; //print(); //process scan data intersecting interval for(typename ScanData::iterator itr = lowItr; itr != highItr; ){ //std::cout << "case5" << std::endl; //std::cout << itr->first << std::endl; std::set<int>& beforeIds = itr->second; ++itr; evaluateInterval_(outputContainer, beforeIds, ids, leadingEdge); } //print(); //merge the bottom interval with the one below if they have the same count if(lowItr != scanData_.begin()){ //std::cout << "case6" << std::endl; typename ScanData::iterator belowLowItr = lowItr; --belowLowItr; if(belowLowItr->second == lowItr->second) { //std::cout << "case7" << std::endl; scanData_.erase(lowItr); } } //merge the top interval with the one above if they have the same count if(highItr != scanData_.begin()) { //std::cout << "case8" << std::endl; typename ScanData::iterator beforeHighItr = highItr; --beforeHighItr; if(beforeHighItr->second == highItr->second) { //std::cout << "case9" << std::endl; scanData_.erase(highItr); highItr = beforeHighItr; ++highItr; } } //print(); nextItr_ = highItr; } // inline void print() const { // for(typename ScanData::const_iterator itr = scanData_.begin(); itr != scanData_.end(); ++itr) { // std::cout << itr->first << ": "; // for(std::set<int>::const_iterator sitr = itr->second.begin(); // sitr != itr->second.end(); ++sitr){ // std::cout << *sitr << " "; // } // std::cout << std::endl; // } // } private: inline typename ScanData::iterator lookup_(Unit pos){ if(nextItr_ != scanData_.end() && nextItr_->first >= pos) { return nextItr_; } return nextItr_ = scanData_.lower_bound(pos); } inline typename ScanData::iterator insert_(Unit pos, const std::set<int>& ids){ //std::cout << "inserting " << ids.size() << " ids at: " << pos << std::endl; return nextItr_ = scanData_.insert(nextItr_, std::pair<Unit, std::set<int> >(pos, ids)); } template <typename graphT> inline void evaluateInterval_(graphT& outputContainer, std::set<int>& ids, const std::set<int>& changingIds, bool leadingEdge) { for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){ //std::cout << "evaluateInterval " << (*ciditr) << std::endl; evaluateId_(outputContainer, ids, *ciditr, leadingEdge); } } template <typename graphT> inline void evaluateBorder_(graphT& outputContainer, const std::set<int>& ids, const std::set<int>& changingIds) { for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){ //std::cout << "evaluateBorder " << (*ciditr) << std::endl; evaluateBorderId_(outputContainer, ids, *ciditr); } } template <typename graphT> inline void evaluateBorderId_(graphT& outputContainer, const std::set<int>& ids, int changingId) { for(std::set<int>::const_iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) { //std::cout << "create edge: " << changingId << " " << *scanItr << std::endl; if(changingId != *scanItr){ outputContainer[changingId].insert(*scanItr); outputContainer[*scanItr].insert(changingId); } } } template <typename graphT> inline void evaluateId_(graphT& outputContainer, std::set<int>& ids, int changingId, bool leadingEdge) { //std::cout << "changingId: " << changingId << std::endl; //for( std::set<int>::iterator itr = ids.begin(); itr != ids.end(); ++itr){ // std::cout << *itr << " "; //}std::cout << std::endl; std::set<int>::iterator lb = ids.lower_bound(changingId); if(lb == ids.end() || (*lb) != changingId) { if(leadingEdge) { //std::cout << "insert\n"; //insert and add to output for(std::set<int>::iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) { //std::cout << "create edge: " << changingId << " " << *scanItr << std::endl; if(changingId != *scanItr){ outputContainer[changingId].insert(*scanItr); outputContainer[*scanItr].insert(changingId); } } ids.insert(changingId); } } else { if(!leadingEdge){ //std::cout << "erase\n"; ids.erase(lb); } } } }; template <typename graphT> static inline void processEvent(graphT& outputContainer, TouchOp& op, const TouchScanEvent& data, bool leadingEdge) { for(typename TouchScanEvent::iterator itr = data.begin(); itr != data.end(); ++itr) { //std::cout << "processInterval" << std::endl; op.processInterval(outputContainer, (*itr).first, (*itr).second, leadingEdge); } } template <typename graphT> static inline void performTouch(graphT& outputContainer, const TouchSetData& data) { typename std::map<Unit, TouchScanEvent>::const_iterator leftItr = data.first.begin(); typename std::map<Unit, TouchScanEvent>::const_iterator rightItr = data.second.begin(); typename std::map<Unit, TouchScanEvent>::const_iterator leftEnd = data.first.end(); typename std::map<Unit, TouchScanEvent>::const_iterator rightEnd = data.second.end(); TouchOp op; while(leftItr != leftEnd || rightItr != rightEnd) { //std::cout << "loop" << std::endl; op.advanceScan(); //rightItr cannont be at end if leftItr is not at end if(leftItr != leftEnd && rightItr != rightEnd && leftItr->first <= rightItr->first) { //std::cout << "case1" << std::endl; //std::cout << leftItr ->first << std::endl; processEvent(outputContainer, op, leftItr->second, true); ++leftItr; } else { //std::cout << "case2" << std::endl; //std::cout << rightItr ->first << std::endl; processEvent(outputContainer, op, rightItr->second, false); ++rightItr; } } } template <class iT> static inline void populateTouchSetData(TouchSetData& data, iT beginData, iT endData, int id) { Unit prevPos = ((std::numeric_limits<Unit>::max)()); Unit prevY = prevPos; int count = 0; for(iT itr = beginData; itr != endData; ++itr) { Unit pos = (*itr).first; if(pos != prevPos) { prevPos = pos; prevY = (*itr).second.first; count = (*itr).second.second; continue; } Unit y = (*itr).second.first; if(count != 0 && y != prevY) { std::pair<Interval, int> element(Interval(prevY, y), id); if(count > 0) { data.first[pos].insert(element); } else { data.second[pos].insert(element); } } prevY = y; count += (*itr).second.second; } } static inline void populateTouchSetData(TouchSetData& data, const std::vector<std::pair<Unit, std::pair<Unit, int> > >& inputData, int id) { populateTouchSetData(data, inputData.begin(), inputData.end(), id); } }; } } #endif