/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file trigo.cpp * @brief Trigonometric and geometric basic functions. */ #include <fctsys.h> #include <macros.h> #include <trigo.h> #include <common.h> #include <math_for_graphics.h> // Returns true if the point P is on the segment S. // faster than TestSegmentHit() because P should be exactly on S // therefore works fine only for H, V and 45 deg segm (suitable for wires in eeschema) bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd, const wxPoint& aTestPoint ) { wxPoint vectSeg = aSegEnd - aSegStart; // Vector from S1 to S2 wxPoint vectPoint = aTestPoint - aSegStart; // Vector from S1 to P // Use long long here to avoid overflow in calculations if( (long long) vectSeg.x * vectPoint.y - (long long) vectSeg.y * vectPoint.x ) return false; /* Cross product non-zero, vectors not parallel */ if( ( (long long) vectSeg.x * vectPoint.x + (long long) vectSeg.y * vectPoint.y ) < ( (long long) vectPoint.x * vectPoint.x + (long long) vectPoint.y * vectPoint.y ) ) return false; /* Point not on segment */ return true; } // Returns true if the segment 1 intersectd the segment 2. bool SegmentIntersectsSegment( const wxPoint &a_p1_l1, const wxPoint &a_p2_l1, const wxPoint &a_p1_l2, const wxPoint &a_p2_l2 ) { //We are forced to use 64bit ints because the internal units can oveflow 32bit ints when // multiplied with each other, the alternative would be to scale the units down (i.e. divide // by a fixed number). long long dX_a, dY_a, dX_b, dY_b, dX_ab, dY_ab; long long num_a, num_b, den; //Test for intersection within the bounds of both line segments using line equations of the // form: // x_k(u_k) = u_k * dX_k + x_k(0) // y_k(u_k) = u_k * dY_k + y_k(0) // with 0 <= u_k <= 1 and k = [ a, b ] dX_a = a_p2_l1.x - a_p1_l1.x; dY_a = a_p2_l1.y - a_p1_l1.y; dX_b = a_p2_l2.x - a_p1_l2.x; dY_b = a_p2_l2.y - a_p1_l2.y; dX_ab = a_p1_l2.x - a_p1_l1.x; dY_ab = a_p1_l2.y - a_p1_l1.y; den = dY_a * dX_b - dY_b * dX_a ; //Check if lines are parallel if( den == 0 ) return false; num_a = dY_ab * dX_b - dY_b * dX_ab; num_b = dY_ab * dX_a - dY_a * dX_ab; //We wont calculate directly the u_k of the intersection point to avoid floating point // division but they could be calculated with: // u_a = (float) num_a / (float) den; // u_b = (float) num_b / (float) den; if( den < 0 ) { den = -den; num_a = -num_a; num_b = -num_b; } //Test sign( u_a ) and return false if negative if( num_a < 0 ) return false; //Test sign( u_b ) and return false if negative if( num_b < 0 ) return false; //Test to ensure (u_a <= 1) if( num_a > den ) return false; //Test to ensure (u_b <= 1) if( num_b > den ) return false; return true; } /* Function TestSegmentHit * test for hit on line segment * i.e. a reference point is within a given distance from segment * aRefPoint = reference point to test * aStart, aEnd are coordinates of end points segment * aDist = maximum distance for hit * Note: for calculation time reasons, the distance between the ref point * and the segment is not always exactly calculated * (we only know if the actual dist is < aDist, not exactly know this dist. * Because many times we have horizontal or vertical segments, * a special calcultaion is made for them * Note: sometimes we need to calculate the distande between 2 points * A square root should be calculated. * However, because we just compare 2 distnaces, to avoid calculating square root, * the square of distances are compared. */ static inline double square( int x ) // helper function to calculate x*x { return (double) x * x; } bool TestSegmentHit( const wxPoint &aRefPoint, wxPoint aStart, wxPoint aEnd, int aDist ) { // test for vertical or horizontal segment if( aEnd.x == aStart.x ) { // vertical segment int ll = abs( aRefPoint.x - aStart.x ); if( ll > aDist ) return false; // To have only one case to examine, ensure aEnd.y > aStart.y if( aEnd.y < aStart.y ) EXCHG( aStart.y, aEnd.y ); if( aRefPoint.y <= aEnd.y && aRefPoint.y >= aStart.y ) return true; // there is a special case: x,y near an end point (distance < dist ) // the distance should be carefully calculated if( (aStart.y - aRefPoint.y) < aDist ) { double dd = square( aRefPoint.x - aStart.x) + square( aRefPoint.y - aStart.y ); if( dd <= square( aDist ) ) return true; } if( (aRefPoint.y - aEnd.y) < aDist ) { double dd = square( aRefPoint.x - aEnd.x ) + square( aRefPoint.y - aEnd.y ); if( dd <= square( aDist ) ) return true; } } else if( aEnd.y == aStart.y ) { // horizontal segment int ll = abs( aRefPoint.y - aStart.y ); if( ll > aDist ) return false; // To have only one case to examine, ensure xf > xi if( aEnd.x < aStart.x ) EXCHG( aStart.x, aEnd.x ); if( aRefPoint.x <= aEnd.x && aRefPoint.x >= aStart.x ) return true; // there is a special case: x,y near an end point (distance < dist ) // the distance should be carefully calculated if( (aStart.x - aRefPoint.x) <= aDist ) { double dd = square( aRefPoint.x - aStart.x ) + square( aRefPoint.y - aStart.y ); if( dd <= square( aDist ) ) return true; } if( (aRefPoint.x - aEnd.x) <= aDist ) { double dd = square( aRefPoint.x - aEnd.x ) + square( aRefPoint.y - aEnd.y ); if( dd <= square( aDist ) ) return true; } } else { // oblique segment: // First, we need to calculate the distance between the point // and the line defined by aStart and aEnd // this dist should be < dist // // find a,slope such that aStart and aEnd lie on y = a + slope*x double slope = (double) (aEnd.y - aStart.y) / (aEnd.x - aStart.x); double a = (double) aStart.y - slope * aStart.x; // find c,orthoslope such that (x,y) lies on y = c + orthoslope*x, // where orthoslope=(-1/slope) // to calculate xp, yp = near point from aRefPoint // which is on the line defined by aStart, aEnd double orthoslope = -1.0 / slope; double c = (double) aRefPoint.y - orthoslope * aRefPoint.x; // find nearest point to (x,y) on line defined by aStart, aEnd double xp = (a - c) / (orthoslope - slope); double yp = a + slope * xp; // find distance to line, in fact the square of dist, // because we just know if it is > or < aDist double dd = square( aRefPoint.x - xp ) + square( aRefPoint.y - yp ); double dist = square( aDist ); if( dd > dist ) // this reference point is not a good candiadte. return false; // dd is < dist, therefore we should make a fine test if( fabs( slope ) > 0.7 ) { // line segment more vertical than horizontal if( (aEnd.y > aStart.y && yp <= aEnd.y && yp >= aStart.y) || (aEnd.y < aStart.y && yp >= aEnd.y && yp <= aStart.y) ) return true; } else { // line segment more horizontal than vertical if( (aEnd.x > aStart.x && xp <= aEnd.x && xp >= aStart.x) || (aEnd.x < aStart.x && xp >= aEnd.x && xp <= aStart.x) ) return true; } // Here, the test point is still a good candidate, // however it is not "between" the end points of the segment. // It is "outside" the segment, but it could be near a segment end point // Therefore, we test the dist from the test point to each segment end point dd = square( aRefPoint.x - aEnd.x ) + square( aRefPoint.y - aEnd.y ); if( dd <= dist ) return true; dd = square( aRefPoint.x - aStart.x ) + square( aRefPoint.y - aStart.y ); if( dd <= dist ) return true; } return false; // no hit } double ArcTangente( int dy, int dx ) { /* gcc is surprisingly smart in optimizing these conditions in a tree! */ if( dx == 0 && dy == 0 ) return 0; if( dy == 0 ) { if( dx >= 0 ) return 0; else return -1800; } if( dx == 0 ) { if( dy >= 0 ) return 900; else return -900; } if( dx == dy ) { if( dx >= 0 ) return 450; else return -1800 + 450; } if( dx == -dy ) { if( dx >= 0 ) return -450; else return 1800 - 450; } // Of course dy and dx are treated as double return RAD2DECIDEG( atan2( dy, dx ) ); } void RotatePoint( int* pX, int* pY, double angle ) { int tmp; NORMALIZE_ANGLE_POS( angle ); // Cheap and dirty optimizations for 0, 90, 180, and 270 degrees. if( angle == 0 ) return; if( angle == 900 ) /* sin = 1, cos = 0 */ { tmp = *pX; *pX = *pY; *pY = -tmp; } else if( angle == 1800 ) /* sin = 0, cos = -1 */ { *pX = -*pX; *pY = -*pY; } else if( angle == 2700 ) /* sin = -1, cos = 0 */ { tmp = *pX; *pX = -*pY; *pY = tmp; } else { double fangle = DECIDEG2RAD( angle ); double sinus = sin( fangle ); double cosinus = cos( fangle ); double fpx = (*pY * sinus ) + (*pX * cosinus ); double fpy = (*pY * cosinus ) - (*pX * sinus ); *pX = KiROUND( fpx ); *pY = KiROUND( fpy ); } } void RotatePoint( int* pX, int* pY, int cx, int cy, double angle ) { int ox, oy; ox = *pX - cx; oy = *pY - cy; RotatePoint( &ox, &oy, angle ); *pX = ox + cx; *pY = oy + cy; } void RotatePoint( wxPoint* point, const wxPoint& centre, double angle ) { int ox, oy; ox = point->x - centre.x; oy = point->y - centre.y; RotatePoint( &ox, &oy, angle ); point->x = ox + centre.x; point->y = oy + centre.y; } void RotatePoint( double* pX, double* pY, double cx, double cy, double angle ) { double ox, oy; ox = *pX - cx; oy = *pY - cy; RotatePoint( &ox, &oy, angle ); *pX = ox + cx; *pY = oy + cy; } void RotatePoint( double* pX, double* pY, double angle ) { double tmp; NORMALIZE_ANGLE_POS( angle ); // Cheap and dirty optimizations for 0, 90, 180, and 270 degrees. if( angle == 0 ) return; if( angle == 900 ) /* sin = 1, cos = 0 */ { tmp = *pX; *pX = *pY; *pY = -tmp; } else if( angle == 1800 ) /* sin = 0, cos = -1 */ { *pX = -*pX; *pY = -*pY; } else if( angle == 2700 ) /* sin = -1, cos = 0 */ { tmp = *pX; *pX = -*pY; *pY = tmp; } else { double fangle = DECIDEG2RAD( angle ); double sinus = sin( fangle ); double cosinus = cos( fangle ); double fpx = (*pY * sinus ) + (*pX * cosinus ); double fpy = (*pY * cosinus ) - (*pX * sinus ); *pX = fpx; *pY = fpy; } }