/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_quaternion /// @file glm/gtc/quaternion.inl /// @date 2009-05-21 / 2011-06-15 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include <limits> namespace glm{ namespace detail { template <typename T> GLM_FUNC_QUALIFIER typename tquat<T>::size_type tquat<T>::length() const { return 4; } template <typename T> GLM_FUNC_QUALIFIER tquat<T>::tquat() : x(0), y(0), z(0), w(1) {} template <typename T> GLM_FUNC_QUALIFIER tquat<T>::tquat ( value_type const & s, tvec3<T> const & v ) : x(v.x), y(v.y), z(v.z), w(s) {} template <typename T> GLM_FUNC_QUALIFIER tquat<T>::tquat ( value_type const & w, value_type const & x, value_type const & y, value_type const & z ) : x(x), y(y), z(z), w(w) {} ////////////////////////////////////////////////////////////// // tquat conversions //template <typename valType> //GLM_FUNC_QUALIFIER tquat<valType>::tquat //( // valType const & pitch, // valType const & yaw, // valType const & roll //) //{ // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); // // this->w = c.x * c.y * c.z + s.x * s.y * s.z; // this->x = s.x * c.y * c.z - c.x * s.y * s.z; // this->y = c.x * s.y * c.z + s.x * c.y * s.z; // this->z = c.x * c.y * s.z - s.x * s.y * c.z; //} template <typename T> GLM_FUNC_QUALIFIER tquat<T>::tquat ( tvec3<T> const & eulerAngle ) { tvec3<T> c = glm::cos(eulerAngle * value_type(0.5)); tvec3<T> s = glm::sin(eulerAngle * value_type(0.5)); this->w = c.x * c.y * c.z + s.x * s.y * s.z; this->x = s.x * c.y * c.z - c.x * s.y * s.z; this->y = c.x * s.y * c.z + s.x * c.y * s.z; this->z = c.x * c.y * s.z - s.x * s.y * c.z; } template <typename T> GLM_FUNC_QUALIFIER tquat<T>::tquat ( tmat3x3<T> const & m ) { *this = quat_cast(m); } template <typename T> GLM_FUNC_QUALIFIER tquat<T>::tquat ( tmat4x4<T> const & m ) { *this = quat_cast(m); } ////////////////////////////////////////////////////////////// // tquat<T> accesses template <typename T> GLM_FUNC_QUALIFIER typename tquat<T>::value_type & tquat<T>::operator [] (int i) { return (&x)[i]; } template <typename T> GLM_FUNC_QUALIFIER typename tquat<T>::value_type const & tquat<T>::operator [] (int i) const { return (&x)[i]; } ////////////////////////////////////////////////////////////// // tquat<valType> operators template <typename T> GLM_FUNC_QUALIFIER tquat<T> & tquat<T>::operator *= ( value_type const & s ) { this->w *= s; this->x *= s; this->y *= s; this->z *= s; return *this; } template <typename T> GLM_FUNC_QUALIFIER tquat<T> & tquat<T>::operator /= ( value_type const & s ) { this->w /= s; this->x /= s; this->y /= s; this->z /= s; return *this; } ////////////////////////////////////////////////////////////// // tquat<valType> external operators template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> operator- ( detail::tquat<T> const & q ) { return detail::tquat<T>(-q.w, -q.x, -q.y, -q.z); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> operator+ ( detail::tquat<T> const & q, detail::tquat<T> const & p ) { return detail::tquat<T>( q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> operator* ( detail::tquat<T> const & q, detail::tquat<T> const & p ) { return detail::tquat<T>( q.w * p.w - q.x * p.x - q.y * p.y - q.z * p.z, q.w * p.x + q.x * p.w + q.y * p.z - q.z * p.y, q.w * p.y + q.y * p.w + q.z * p.x - q.x * p.z, q.w * p.z + q.z * p.w + q.x * p.y - q.y * p.x); } // Transformation template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> operator* ( detail::tquat<T> const & q, detail::tvec3<T> const & v ) { typename detail::tquat<T>::value_type Two(2); detail::tvec3<T> uv, uuv; detail::tvec3<T> QuatVector(q.x, q.y, q.z); uv = glm::cross(QuatVector, v); uuv = glm::cross(QuatVector, uv); uv *= (Two * q.w); uuv *= Two; return v + uv + uuv; } template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> operator* ( detail::tvec3<T> const & v, detail::tquat<T> const & q ) { return inverse(q) * v; } template <typename T> GLM_FUNC_QUALIFIER detail::tvec4<T> operator* ( detail::tquat<T> const & q, detail::tvec4<T> const & v ) { return detail::tvec4<T>(q * detail::tvec3<T>(v), v.w); } template <typename T> GLM_FUNC_QUALIFIER detail::tvec4<T> operator* ( detail::tvec4<T> const & v, detail::tquat<T> const & q ) { return inverse(q) * v; } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> operator* ( detail::tquat<T> const & q, typename detail::tquat<T>::value_type const & s ) { return detail::tquat<T>( q.w * s, q.x * s, q.y * s, q.z * s); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> operator* ( typename detail::tquat<T>::value_type const & s, detail::tquat<T> const & q ) { return q * s; } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> operator/ ( detail::tquat<T> const & q, typename detail::tquat<T>::value_type const & s ) { return detail::tquat<T>( q.w / s, q.x / s, q.y / s, q.z / s); } ////////////////////////////////////// // Boolean operators template <typename T> GLM_FUNC_QUALIFIER bool operator== ( detail::tquat<T> const & q1, detail::tquat<T> const & q2 ) { return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); } template <typename T> GLM_FUNC_QUALIFIER bool operator!= ( detail::tquat<T> const & q1, detail::tquat<T> const & q2 ) { return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); } }//namespace detail //////////////////////////////////////////////////////// template <typename T> GLM_FUNC_QUALIFIER T length ( detail::tquat<T> const & q ) { return glm::sqrt(dot(q, q)); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> normalize ( detail::tquat<T> const & q ) { typename detail::tquat<T>::value_type len = length(q); if(len <= typename detail::tquat<T>::value_type(0)) // Problem return detail::tquat<T>(1, 0, 0, 0); typename detail::tquat<T>::value_type oneOverLen = typename detail::tquat<T>::value_type(1) / len; return detail::tquat<T>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); } template <typename T> GLM_FUNC_QUALIFIER T dot ( detail::tquat<T> const & q1, detail::tquat<T> const & q2 ) { return q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w; } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> cross ( detail::tquat<T> const & q1, detail::tquat<T> const & q2 ) { return detail::tquat<T>( q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); } /* // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> mix ( detail::tquat<T> const & x, detail::tquat<T> const & y, typename detail::tquat<T>::value_type const & a ) { if(a <= typename detail::tquat<T>::value_type(0)) return x; if(a >= typename detail::tquat<T>::value_type(1)) return y; float fCos = dot(x, y); detail::tquat<T> y2(y); //BUG!!! tquat<T> y2; if(fCos < typename detail::tquat<T>::value_type(0)) { y2 = -y; fCos = -fCos; } //if(fCos > 1.0f) // problem float k0, k1; if(fCos > typename detail::tquat<T>::value_type(0.9999)) { k0 = typename detail::tquat<T>::value_type(1) - a; k1 = typename detail::tquat<T>::value_type(0) + a; //BUG!!! 1.0f + a; } else { typename detail::tquat<T>::value_type fSin = sqrt(T(1) - fCos * fCos); typename detail::tquat<T>::value_type fAngle = atan(fSin, fCos); typename detail::tquat<T>::value_type fOneOverSin = T(1) / fSin; k0 = sin((typename detail::tquat<T>::value_type(1) - a) * fAngle) * fOneOverSin; k1 = sin((typename detail::tquat<T>::value_type(0) + a) * fAngle) * fOneOverSin; } return detail::tquat<T>( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> mix2 ( detail::tquat<T> const & x, detail::tquat<T> const & y, T const & a ) { bool flip = false; if(a <= T(0)) return x; if(a >= T(1)) return y; T cos_t = dot(x, y); if(cos_t < T(0)) { cos_t = -cos_t; flip = true; } T alpha(0), beta(0); if(T(1) - cos_t < 1e-7) beta = T(1) - alpha; else { T theta = acos(cos_t); T sin_t = sin(theta); beta = sin(theta * (T(1) - alpha)) / sin_t; alpha = sin(alpha * theta) / sin_t; } if(flip) alpha = -alpha; return normalize(beta * x + alpha * y); } */ template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> mix ( detail::tquat<T> const & x, detail::tquat<T> const & y, T const & a ) { T cosTheta = dot(x, y); // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation return detail::tquat<T>( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), mix(x.z, y.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); } } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> lerp ( detail::tquat<T> const & x, detail::tquat<T> const & y, T const & a ) { // Lerp is only defined in [0, 1] assert(a >= T(0)); assert(a <= T(1)); return x * (T(1) - a) + (y * a); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> slerp ( detail::tquat<T> const & x, detail::tquat<T> const & y, T const & a ) { detail::tquat<T> z = y; T cosTheta = dot(x, y); // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if (cosTheta < T(0)) { z = -y; cosTheta = -cosTheta; } // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation return detail::tquat<T>( mix(x.w, z.w, a), mix(x.x, z.x, a), mix(x.y, z.y, a), mix(x.z, z.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); } } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> conjugate ( detail::tquat<T> const & q ) { return detail::tquat<T>(q.w, -q.x, -q.y, -q.z); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> inverse ( detail::tquat<T> const & q ) { return conjugate(q) / dot(q, q); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> rotate ( detail::tquat<T> const & q, typename detail::tquat<T>::value_type const & angle, detail::tvec3<T> const & v ) { detail::tvec3<T> Tmp = v; // Axis of rotation must be normalised typename detail::tquat<T>::value_type len = glm::length(Tmp); if(abs(len - T(1)) > T(0.001)) { T oneOverLen = T(1) / len; Tmp.x *= oneOverLen; Tmp.y *= oneOverLen; Tmp.z *= oneOverLen; } #ifdef GLM_FORCE_RADIANS typename detail::tquat<T>::value_type const AngleRad(angle); #else typename detail::tquat<T>::value_type const AngleRad = radians(angle); #endif typename detail::tquat<T>::value_type const Sin = sin(AngleRad * T(0.5)); return q * detail::tquat<T>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); //return gtc::quaternion::cross(q, detail::tquat<T>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); } template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> eulerAngles ( detail::tquat<T> const & x ) { return detail::tvec3<T>(pitch(x), yaw(x), roll(x)); } template <typename valType> GLM_FUNC_QUALIFIER valType roll ( detail::tquat<valType> const & q ) { #ifdef GLM_FORCE_RADIANS return valType(atan2(valType(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); #else return glm::degrees(atan(valType(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); #endif } template <typename valType> GLM_FUNC_QUALIFIER valType pitch ( detail::tquat<valType> const & q ) { #ifdef GLM_FORCE_RADIANS return valType(atan2(valType(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); #else return glm::degrees(atan(valType(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); #endif } template <typename valType> GLM_FUNC_QUALIFIER valType yaw ( detail::tquat<valType> const & q ) { #ifdef GLM_FORCE_RADIANS return asin(valType(-2) * (q.x * q.z - q.w * q.y)); #else return glm::degrees(asin(valType(-2) * (q.x * q.z - q.w * q.y))); #endif } template <typename T> GLM_FUNC_QUALIFIER detail::tmat3x3<T> mat3_cast ( detail::tquat<T> const & q ) { detail::tmat3x3<T> Result(T(1)); Result[0][0] = 1 - 2 * q.y * q.y - 2 * q.z * q.z; Result[0][1] = 2 * q.x * q.y + 2 * q.w * q.z; Result[0][2] = 2 * q.x * q.z - 2 * q.w * q.y; Result[1][0] = 2 * q.x * q.y - 2 * q.w * q.z; Result[1][1] = 1 - 2 * q.x * q.x - 2 * q.z * q.z; Result[1][2] = 2 * q.y * q.z + 2 * q.w * q.x; Result[2][0] = 2 * q.x * q.z + 2 * q.w * q.y; Result[2][1] = 2 * q.y * q.z - 2 * q.w * q.x; Result[2][2] = 1 - 2 * q.x * q.x - 2 * q.y * q.y; return Result; } template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> mat4_cast ( detail::tquat<T> const & q ) { return detail::tmat4x4<T>(mat3_cast(q)); } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> quat_cast ( detail::tmat3x3<T> const & m ) { typename detail::tquat<T>::value_type fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; typename detail::tquat<T>::value_type fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; typename detail::tquat<T>::value_type fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; typename detail::tquat<T>::value_type fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; int biggestIndex = 0; typename detail::tquat<T>::value_type fourBiggestSquaredMinus1 = fourWSquaredMinus1; if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourXSquaredMinus1; biggestIndex = 1; } if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourYSquaredMinus1; biggestIndex = 2; } if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourZSquaredMinus1; biggestIndex = 3; } typename detail::tquat<T>::value_type biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); typename detail::tquat<T>::value_type mult = T(0.25) / biggestVal; detail::tquat<T> Result; switch(biggestIndex) { case 0: Result.w = biggestVal; Result.x = (m[1][2] - m[2][1]) * mult; Result.y = (m[2][0] - m[0][2]) * mult; Result.z = (m[0][1] - m[1][0]) * mult; break; case 1: Result.w = (m[1][2] - m[2][1]) * mult; Result.x = biggestVal; Result.y = (m[0][1] + m[1][0]) * mult; Result.z = (m[2][0] + m[0][2]) * mult; break; case 2: Result.w = (m[2][0] - m[0][2]) * mult; Result.x = (m[0][1] + m[1][0]) * mult; Result.y = biggestVal; Result.z = (m[1][2] + m[2][1]) * mult; break; case 3: Result.w = (m[0][1] - m[1][0]) * mult; Result.x = (m[2][0] + m[0][2]) * mult; Result.y = (m[1][2] + m[2][1]) * mult; Result.z = biggestVal; break; default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. assert(false); break; } return Result; } template <typename T> GLM_FUNC_QUALIFIER detail::tquat<T> quat_cast ( detail::tmat4x4<T> const & m4 ) { return quat_cast(detail::tmat3x3<T>(m4)); } template <typename T> GLM_FUNC_QUALIFIER T angle ( detail::tquat<T> const & x ) { #ifdef GLM_FORCE_RADIANS return acos(x.w) * T(2); #else return glm::degrees(acos(x.w) * T(2)); #endif } template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T> axis ( detail::tquat<T> const & x ) { T tmp1 = T(1) - x.w * x.w; if(tmp1 <= T(0)) return detail::tvec3<T>(0, 0, 1); T tmp2 = T(1) / sqrt(tmp1); return detail::tvec3<T>(x.x * tmp2, x.y * tmp2, x.z * tmp2); } template <typename valType> GLM_FUNC_QUALIFIER detail::tquat<valType> angleAxis ( valType const & angle, valType const & x, valType const & y, valType const & z ) { return angleAxis(angle, detail::tvec3<valType>(x, y, z)); } template <typename valType> GLM_FUNC_QUALIFIER detail::tquat<valType> angleAxis ( valType const & angle, detail::tvec3<valType> const & v ) { detail::tquat<valType> result; #ifdef GLM_FORCE_RADIANS valType a(angle); #else valType a(glm::radians(angle)); #endif valType s = glm::sin(a * valType(0.5)); result.w = glm::cos(a * valType(0.5)); result.x = v.x * s; result.y = v.y * s; result.z = v.z * s; return result; } }//namespace glm