Commit b7db0ef8 authored by charras's avatar charras

updating polygon lib code. A bug removed.

parent 7c5feb61
...@@ -169,16 +169,8 @@ int BOARD::TestAreaPolygon( ZONE_CONTAINER* CurrArea ) ...@@ -169,16 +169,8 @@ int BOARD::TestAreaPolygon( ZONE_CONTAINER* CurrArea )
int y2i = p->GetY( is2 ); int y2i = p->GetY( is2 );
int x2f = p->GetX( is2_next ); int x2f = p->GetX( is2_next );
int y2f = p->GetY( is2_next ); int y2f = p->GetY( is2_next );
int ret = FindSegmentIntersections( x1i, int ret = FindSegmentIntersections( x1i, y1i, x1f, y1f, style,
y1i, x2i, y2i, x2f, y2f, style2 );
x1f,
y1f,
style,
x2i,
y2i,
x2f,
y2f,
style2 );
if( ret ) if( ret )
{ {
// intersection between non-adjacent sides // intersection between non-adjacent sides
...@@ -246,8 +238,6 @@ int BOARD::ClipAreaPolygon( ZONE_CONTAINER* CurrArea, ...@@ -246,8 +238,6 @@ int BOARD::ClipAreaPolygon( ZONE_CONTAINER* CurrArea,
str += wxT( "such as adding cutouts. It can't be fixed automatically.\n" ); str += wxT( "such as adding cutouts. It can't be fixed automatically.\n" );
str += wxT( "Manual correction is recommended." ); str += wxT( "Manual correction is recommended." );
wxMessageBox( str ); wxMessageBox( str );
// bDontShowSelfIntersectionArcsWarning = dlg.bDontShowBoxState;
} }
return -1; // arcs intersect with other sides, error return -1; // arcs intersect with other sides, error
} }
...@@ -427,8 +417,6 @@ int BOARD::CombineAllAreasInNet( int aNetCode, bool bMessageBox, bool bUseUtilit ...@@ -427,8 +417,6 @@ int BOARD::CombineAllAreasInNet( int aNetCode, bool bMessageBox, bool bUseUtilit
curr_area->m_Netname.GetData() ); curr_area->m_Netname.GetData() );
str += wxT( "Therefore, these areas can't be combined." ); str += wxT( "Therefore, these areas can't be combined." );
wxMessageBox( str ); wxMessageBox( str );
// bDontShowIntersectionArcsWarning = dlg.bDontShowBoxState;
} }
} }
} }
......
...@@ -30,10 +30,11 @@ CPolyLine::CPolyLine() ...@@ -30,10 +30,11 @@ CPolyLine::CPolyLine()
CPolyLine::~CPolyLine() CPolyLine::~CPolyLine()
{ {
Undraw(); Undraw();
if ( m_Kbool_Poly_Engine ) if( m_Kbool_Poly_Engine )
delete m_Kbool_Poly_Engine; delete m_Kbool_Poly_Engine;
} }
/** Function NormalizeWithKbool /** Function NormalizeWithKbool
* Use the Kbool Library to clip contours: if outlines are crossing, the self-crossing polygon * Use the Kbool Library to clip contours: if outlines are crossing, the self-crossing polygon
* is converted to non self-crossing polygon by adding extra points at the crossing locations * is converted to non self-crossing polygon by adding extra points at the crossing locations
...@@ -83,8 +84,8 @@ int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, boo ...@@ -83,8 +84,8 @@ int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, boo
hole_array.push_back( hole ); hole_array.push_back( hole );
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // store hole while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // store hole
{ {
int x = (int)m_Kbool_Poly_Engine->GetPolygonXPoint(); int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int)m_Kbool_Poly_Engine->GetPolygonYPoint(); int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
hole->push_back( x ); hole->push_back( x );
hole->push_back( y ); hole->push_back( y );
} }
...@@ -99,8 +100,8 @@ int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, boo ...@@ -99,8 +100,8 @@ int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, boo
bool first = true; bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{ // foreach point in the polygon { // foreach point in the polygon
int x = (int)m_Kbool_Poly_Engine->GetPolygonXPoint(); int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int)m_Kbool_Poly_Engine->GetPolygonYPoint(); int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first ) if( first )
{ {
first = false; first = false;
...@@ -116,13 +117,13 @@ int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, boo ...@@ -116,13 +117,13 @@ int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, boo
} }
else if( aExtraPolyList ) // a new outside contour is found: create a new CPolyLine else if( aExtraPolyList ) // a new outside contour is found: create a new CPolyLine
{ {
polyline = new CPolyLine; // create new poly polyline = new CPolyLine; // create new poly
aExtraPolyList->push_back( polyline ); // put it in array aExtraPolyList->push_back( polyline ); // put it in array
bool first = true; bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // read next external contour while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // read next external contour
{ {
int x = (int)m_Kbool_Poly_Engine->GetPolygonXPoint(); int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int)m_Kbool_Poly_Engine->GetPolygonYPoint(); int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first ) if( first )
{ {
first = false; first = false;
...@@ -227,8 +228,8 @@ int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng, ...@@ -227,8 +228,8 @@ int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng,
{ {
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{ {
int x = (int)m_Kbool_Poly_Engine->GetPolygonXPoint(); int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int)m_Kbool_Poly_Engine->GetPolygonYPoint(); int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
aBooleng->AddPoint( x, y ); aBooleng->AddPoint( x, y );
count++; count++;
} }
...@@ -259,7 +260,7 @@ int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng, ...@@ -259,7 +260,7 @@ int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng,
* @return error: 0 if Ok, 1 if error * @return error: 0 if Ok, 1 if error
*/ */
int CPolyLine::MakeKboolPoly( int aStart_contour, int aEnd_contour, std::vector<CArc> * arc_array, int CPolyLine::MakeKboolPoly( int aStart_contour, int aEnd_contour, std::vector<CArc> * arc_array,
bool aConvertHoles ) bool aConvertHoles )
{ {
if( m_Kbool_Poly_Engine ) if( m_Kbool_Poly_Engine )
{ {
...@@ -300,8 +301,8 @@ int CPolyLine::MakeKboolPoly( int aStart_contour, int aEnd_contour, std::vector< ...@@ -300,8 +301,8 @@ int CPolyLine::MakeKboolPoly( int aStart_contour, int aEnd_contour, std::vector<
{ {
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{ {
int x = (int)m_Kbool_Poly_Engine->GetPolygonXPoint(); int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int)m_Kbool_Poly_Engine->GetPolygonYPoint(); int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
booleng->AddPoint( x, y ); booleng->AddPoint( x, y );
} }
...@@ -563,12 +564,12 @@ void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles ) ...@@ -563,12 +564,12 @@ void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
} }
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*> * pa, bool bRetainArcs ) int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*> * pa, bool bRetainArcs )
{ {
return NormalizeWithKbool( pa, bRetainArcs ); return NormalizeWithKbool( pa, bRetainArcs );
} }
// Restore arcs to a polygon where they were replaced with steps // Restore arcs to a polygon where they were replaced with steps
// If pa != NULL, also use polygons in pa array // If pa != NULL, also use polygons in pa array
// //
...@@ -1215,20 +1216,20 @@ void CPolyLine::Hatch() ...@@ -1215,20 +1216,20 @@ void CPolyLine::Hatch()
if( corner[ic].end_contour || ( ic == (int) (corner.size() - 1) ) ) if( corner[ic].end_contour || ( ic == (int) (corner.size() - 1) ) )
{ {
ok = FindLineSegmentIntersection( a, slope, ok = FindLineSegmentIntersection( a, slope,
corner[ic].x, corner[ic].y, corner[ic].x, corner[ic].y,
corner[i_start_contour].x, corner[i_start_contour].x,
corner[i_start_contour].y, corner[i_start_contour].y,
side_style[ic], side_style[ic],
&x, &y, &x2, &y2 ); &x, &y, &x2, &y2 );
i_start_contour = ic + 1; i_start_contour = ic + 1;
} }
else else
{ {
ok = FindLineSegmentIntersection( a, slope, ok = FindLineSegmentIntersection( a, slope,
corner[ic].x, corner[ic].y, corner[ic].x, corner[ic].y,
corner[ic + 1].x, corner[ic + 1].y, corner[ic + 1].x, corner[ic + 1].y,
side_style[ic], side_style[ic],
&x, &y, &x2, &y2 ); &x, &y, &x2, &y2 );
} }
if( ok ) if( ok )
{ {
...@@ -1302,7 +1303,7 @@ void CPolyLine::Hatch() ...@@ -1302,7 +1303,7 @@ void CPolyLine::Hatch()
double y2 = yy[ip + 1] - dx * slope; double y2 = yy[ip + 1] - dx * slope;
m_HatchLines.push_back( CSegment( xx[ip], yy[ip], to_int( x1 ), to_int( y1 ) ) ); m_HatchLines.push_back( CSegment( xx[ip], yy[ip], to_int( x1 ), to_int( y1 ) ) );
m_HatchLines.push_back( CSegment( xx[ip + 1], yy[ip + 1], to_int( x2 ), m_HatchLines.push_back( CSegment( xx[ip + 1], yy[ip + 1], to_int( x2 ),
to_int( y2 ) ) ); to_int( y2 ) ) );
} }
} }
} }
...@@ -1314,27 +1315,26 @@ void CPolyLine::Hatch() ...@@ -1314,27 +1315,26 @@ void CPolyLine::Hatch()
// test to see if a point is inside polyline // test to see if a point is inside polyline
// //
bool CPolyLine::TestPointInside( int x, int y ) bool CPolyLine::TestPointInside( int px, int py )
{ {
enum {
MAXPTS = 100
};
if( !GetClosed() ) if( !GetClosed() )
wxASSERT( 0 ); wxASSERT( 0 );
// define line passing through (x,y), with slope = 2/3; // define line passing through (x,y), with slope = 2/3;
// get intersection points // get intersection points
double xx[MAXPTS], yy[MAXPTS]; int xx, yy;
double slope = (double) 2.0 / 3.0; double slope = (double) 2.0 / 3.0;
double a = y - slope * x; double a = py - slope * px;
int nloops = 0; int nloops = 0;
int npts; int npts;
bool inside = false;
// make this a loop so if my homebrew algorithm screws up, we try it again // make this a loop so if my homebrew algorithm screws up, we try it again
do do
{ {
// now find all intersection points of line with polyline sides // now find all intersection points of line with polyline sides
npts = 0; npts = 0;
inside = false;
for( int icont = 0; icont<GetNumContours(); icont++ ) for( int icont = 0; icont<GetNumContours(); icont++ )
{ {
int istart = GetContourStart( icont ); int istart = GetContourStart( icont );
...@@ -1345,29 +1345,35 @@ bool CPolyLine::TestPointInside( int x, int y ) ...@@ -1345,29 +1345,35 @@ bool CPolyLine::TestPointInside( int x, int y )
int ok; int ok;
if( ic == istart ) if( ic == istart )
ok = FindLineSegmentIntersection( a, slope, ok = FindLineSegmentIntersection( a, slope,
corner[iend].x, corner[iend].y, corner[iend].x, corner[iend].y,
corner[istart].x, corner[istart].y, corner[istart].x, corner[istart].y,
side_style[corner.size() - 1], side_style[iend],
&x, &y, &x2, &y2 ); &x, &y, &x2, &y2 );
else else
ok = FindLineSegmentIntersection( a, slope, ok = FindLineSegmentIntersection( a, slope,
corner[ic - 1].x, corner[ic - 1].y, corner[ic - 1].x, corner[ic - 1].y,
corner[ic].x, corner[ic].y, corner[ic].x, corner[ic].y,
side_style[ic - 1], side_style[ic - 1],
&x, &y, &x2, &y2 ); &x, &y, &x2, &y2 );
if( ok ) if( ok )
{ {
xx[npts] = (int) x; xx = (int) x;
yy[npts] = (int) y; yy = (int) y;
if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
npts++; npts++;
wxASSERT( npts<MAXPTS ); // overflow
} }
if( ok == 2 ) if( ok == 2 )
{ {
xx[npts] = (int) x2; xx = (int) x2;
yy[npts] = (int) y2; yy = (int) y2;
if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
npts++; npts++;
wxASSERT( npts<MAXPTS ); // overflow
} }
} }
} }
...@@ -1378,49 +1384,34 @@ bool CPolyLine::TestPointInside( int x, int y ) ...@@ -1378,49 +1384,34 @@ bool CPolyLine::TestPointInside( int x, int y )
wxASSERT( npts % 2==0 ); // odd number of intersection points, error wxASSERT( npts % 2==0 ); // odd number of intersection points, error
// count intersection points to right of (x,y), if odd (x,y) is inside polyline return inside;
int ncount = 0;
for( int ip = 0; ip<npts; ip++ )
{
if( xx[ip] == x && yy[ip] == y )
return FALSE; // (x,y) is on a side, call it outside
else if( xx[ip] > x )
ncount++;
}
if( ncount % 2 )
return TRUE;
else
return FALSE;
} }
// test to see if a point is inside polyline contour // test to see if a point is inside polyline contour
// //
bool CPolyLine::TestPointInsideContour( int icont, int x, int y ) bool CPolyLine::TestPointInsideContour( int icont, int px, int py )
{ {
if( icont >= GetNumContours() ) if( icont >= GetNumContours() )
return FALSE; return FALSE;
enum {
MAXPTS = 100
};
if( !GetClosed() ) if( !GetClosed() )
wxASSERT( 0 ); wxASSERT( 0 );
// define line passing through (x,y), with slope = 2/3; // define line passing through (x,y), with slope = 2/3;
// get intersection points // get intersection points
double xx[MAXPTS], yy[MAXPTS]; int xx, yy;
double slope = (double) 2.0 / 3.0; double slope = (double) 2.0 / 3.0;
double a = y - slope * x; double a = py - slope * px;
int nloops = 0; int nloops = 0;
int npts; int npts;
bool inside = false;
// make this a loop so if my homebrew algorithm screws up, we try it again // make this a loop so if my homebrew algorithm screws up, we try it again
do do
{ {
// now find all intersection points of line with polyline sides // now find all intersection points of line with polyline sides
npts = 0; npts = 0;
inside = false;
int istart = GetContourStart( icont ); int istart = GetContourStart( icont );
int iend = GetContourEnd( icont ); int iend = GetContourEnd( icont );
for( int ic = istart; ic<=iend; ic++ ) for( int ic = istart; ic<=iend; ic++ )
...@@ -1429,29 +1420,35 @@ bool CPolyLine::TestPointInsideContour( int icont, int x, int y ) ...@@ -1429,29 +1420,35 @@ bool CPolyLine::TestPointInsideContour( int icont, int x, int y )
int ok; int ok;
if( ic == istart ) if( ic == istart )
ok = FindLineSegmentIntersection( a, slope, ok = FindLineSegmentIntersection( a, slope,
corner[iend].x, corner[iend].y, corner[iend].x, corner[iend].y,
corner[istart].x, corner[istart].y, corner[istart].x, corner[istart].y,
side_style[corner.size() - 1], side_style[iend],
&x, &y, &x2, &y2 ); &x, &y, &x2, &y2 );
else else
ok = FindLineSegmentIntersection( a, slope, ok = FindLineSegmentIntersection( a, slope,
corner[ic - 1].x, corner[ic - 1].y, corner[ic - 1].x, corner[ic - 1].y,
corner[ic].x, corner[ic].y, corner[ic].x, corner[ic].y,
side_style[ic - 1], side_style[ic - 1],
&x, &y, &x2, &y2 ); &x, &y, &x2, &y2 );
if( ok ) if( ok )
{ {
xx[npts] = (int) x; xx = (int) x;
yy[npts] = (int) y; yy = (int) y;
npts++; npts++;
wxASSERT( npts<MAXPTS ); // overflow if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
} }
if( ok == 2 ) if( ok == 2 )
{ {
xx[npts] = (int) x2; xx = (int) x2;
yy[npts] = (int) y2; yy = (int) y2;
npts++; npts++;
wxASSERT( npts<MAXPTS ); // overflow if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
} }
} }
...@@ -1461,20 +1458,7 @@ bool CPolyLine::TestPointInsideContour( int icont, int x, int y ) ...@@ -1461,20 +1458,7 @@ bool CPolyLine::TestPointInsideContour( int icont, int x, int y )
wxASSERT( npts % 2==0 ); // odd number of intersection points, error wxASSERT( npts % 2==0 ); // odd number of intersection points, error
// count intersection points to right of (x,y), if odd (x,y) is inside polyline return inside;
int ncount = 0;
for( int ip = 0; ip<npts; ip++ )
{
if( xx[ip] == x && yy[ip] == y )
return FALSE; // (x,y) is on a side, call it outside
else if( xx[ip] > x )
ncount++;
}
if( ncount % 2 )
return TRUE;
else
return FALSE;
} }
...@@ -1545,7 +1529,6 @@ void CPolyLine::SetEndContour( int ic, bool end_contour ) ...@@ -1545,7 +1529,6 @@ void CPolyLine::SetEndContour( int ic, bool end_contour )
} }
void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num ) void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num )
{ {
// get radius // get radius
......
...@@ -47,10 +47,10 @@ void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles = false ); ...@@ -47,10 +47,10 @@ void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles = false );
#define to_int( x ) (int) round( (x) ) #define to_int( x ) (int) round( (x) )
#ifndef min #ifndef min
#define min( x1, x2 ) ( (x1) > (x2) ) ? (x2) : (x1) #define min( x1, x2 ) ( (x1) > (x2) ? (x2) : (x1) )
#endif #endif
#ifndef max #ifndef max
#define max( x1, x2 ) ( (x1) > (x2) ) ? (x1) : (x2) #define max( x1, x2 ) ( (x1) > (x2) ? (x1) : (x2) )
#endif #endif
class CRect class CRect
......
...@@ -639,7 +639,6 @@ bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y ...@@ -639,7 +639,6 @@ bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y
int * x, int * y, double * d ) int * x, int * y, double * d )
{ {
double a, b, dist; double a, b, dist;
// first, test for intersection // first, test for intersection
if( x1i == x1f && x2i == x2f ) if( x1i == x1f && x2i == x2f )
{ {
......
/////////////////////////////////////////////////////////////////////////////
// Name: polygon_test_point_inside.cpp
/////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <vector>
#include "PolyLine.h"
using namespace std;
/* this algo uses the the Jordan curve theorem to find if a point is inside or outside a polygon:
* It run a semi-infinite line horizontally (increasing x, fixed y)
* out from the test point, and count how many edges it crosses.
* At each crossing, the ray switches between inside and outside.
* If odd nimber, the test point is inside the polygon
* This is called the Jordan curve theorem, or sometimes referred to as the "even-odd" test.
*/
/* 2 versions are given.
* the second version is GPL (currently used)
* the first version is for explanations and tests (used to test the second version)
* both use the same algorithm.
*/
#if 0
/* This text and the algorithm come from http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
*
* PNPOLY - Point Inclusion in Polygon Test
* W. Randolph Franklin (WRF)
*
* Table of Contents
*
* 1. The C Code <#The C Code>
* 2. The Method <#The Method>
* 3. Originality <#Originality>
* 4. The Inequality Tests are Tricky <#The Inequality Tests are Tricky>
* 5. C Semantics <#C Semantics>
* 6. Point on a (Boundary) Edge <#Point on an Edge>
* 7. Multiple Components and Holes <#Listing the Vertices>
* 8. Testing Which One of Many Polygons Contains the Point <#Testing a
* Point Against Many Polygons>
* 9. Explanation of /"for (i = 0, j = nvert-1; i < nvert; j = i++)"/
* <#Explanation>
* 10. Fortran Code for the Point in Polygon Test <#Fortran Code for the
* Point in Polygon Test>
* 11. Converting the Code to All Integers <#Converting the Code to All
* Integers>
* 12. License to Use <#License to Use>
*
* The C Code
*
* Here is the code, for reference. Excluding lines with only braces, there
* are only /7 lines/ of code.
*
* int pnpoly(int nvert, float *vertx, float *verty, float ref_pointX, float ref_pointY)
* {
* int i, j, c = 0;
* for (i = 0, j = nvert-1; i < nvert; j = i++) {
* if ( ((verty[i]>ref_pointY) != (verty[j]>ref_pointY)) &&
* (ref_pointX < (vertx[j]-vertx[i]) * (ref_pointY-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
* c = !c;
* }
* return c;
* }
*
* Argument Meaning
* nvert Number of vertices in the polygon. Whether to repeat the first
* vertex at the end is discussed below.
* vertx, verty Arrays containing the x- and y-coordinates of the
* polygon's vertices.
* ref_pointX, ref_pointY X- and y-coordinate of the test point.
*
*
* The Method
*
* I run a semi-infinite ray horizontally (increasing x, fixed y) out from
* the test point, and count how many edges it crosses. At each crossing,
* the ray switches between inside and outside. This is called the /Jordan
* curve theorem/.
*
* The case of the ray going thru a vertex is handled correctly via a
* careful selection of inequalities. Don't mess with this code unless
* you're familiar with the idea of /Simulation of Simplicity/. This
* pretends to shift the ray infinitesimally to one side so that it either
* clearly intersects, or clearly doesn't touch. Since this is merely a
* conceptual, infinitesimal, shift, it never creates an intersection that
* didn't exist before, and never destroys an intersection that clearly
* existed before.
*
* The ray is tested against each edge thus:
*
* 1. Is the point in the half-plane below the extended edge? and
* 2. Is the point's X coordinate within the edge's X-range?
*
* Handling endpoints here is tricky.
*
*
* Originality
*
* I make no claim to having invented the idea. However in 1970, I did
* produce the Fortran code given below on my own, and include it in a
* package of cartographic SW publicly-distributed by David Douglas, Dept
* of Geography, Simon Fraser U and U of Ottawa.
*
* Earlier implementations of point-in-polygon testing presumably exist,
* tho the code might never have been released. Pointers to prior art,
* especially publicly available code, are welcome. One early publication,
* which doesn't handle the point on an edge, and has a typo, is this:
*
* M Shimrat, "Algorithm 112, Position of Point Relative to Polygon",
* /Comm. ACM/ 5(8), Aug 1962, p 434.
*
* A well-written recent summary is this:
*
* E Haines, /Point in Polygon Strategies/,
* http://www.acm.org/pubs/tog/editors/erich/ptinpoly/, 1994.
*
*
* The Inequality Tests are Tricky
*
* If translating the program to another language, be sure to get the
* inequalities in the conditional correct. They were carefully chosen to
* make the program work correctly when the point is vertically below a vertex.
*
* Several people have thought that my program was wrong, when really
* /they/ had gotten the inequalities wrong.
*
*
* C Semantics
*
* My code uses the fact that, in the C language, when executing the code
|a&&b|, if |a| is false, then |b| must not be evaluated. If your
* compiler doesn't do this, then it's not implementing C, and you will get
* a divide-by-zero, i.a., when the test point is vertically in line with a
* vertical edge. When translating this code to another language with
* different semantics, then you must implement this test explicitly.
*
*
* Point on a (Boundary) Edge
*
* PNPOLY partitions the plane into points inside the polygon and points
* outside the polygon. Points that are on the boundary are classified as
* either inside or outside.
*
* 1.
*
* Any particular point is always classified consistently the same
* way. In the following figure, consider what PNPOLY would say when
* the red point, /P/, is tested against the two triangles, /T_L /
* and /T_R /. Depending on internal roundoff errors, PNPOLY may say
* that /P/ is in /T_L / or in /T_R /. However it will always give
* the same answer when /P/ is tested against those triangles. That
* is, if PNPOLY finds that /P/ is in /T_L /, then it will find that
* /P/ is not /T_R /. If PNPOLY finds that /P/ is not in /T_L /, then
* it will find that /P/ is in /T_R /.
*
* 2. If you want to know when a point is exactly on the boundary, you
* need another program. This is only one of many functions that
* PNPOLY lacks; it also doesn't predict tomorrow's weather. You are
* free to extend PNPOLY's source code.
*
* 3. The first reason for this is the numerical analysis position that
* you should not be testing exact equality unless your input is
* exact. Even then, computational roundoff error would often make
* the result wrong.
*
* 4. The second reason is that, if you partition a region of the plane
* into polygons, i.e., form a planar graph, then PNPOLY will locate
* each point into exactly one polygon. In other words, PNPOLY
* considers each polygon to be topologically a semi-open set. This
* makes things simpler, i.e., causes fewer special cases, if you use
* PNPOLY as part of a larger system. Examples of this include
* locating a point in a planar graph, and intersecting two planar
* graphs.
*
*
* Explanation of /"for (i = 0, j = nvert-1; i < nvert; j = i++)"/
*
* The intention is to execute the loop for each i from 0 to nvert-1. For
* each iteration, j is i-1. However that wraps, so if i=0 then j=nvert-1.
* Therefore the current edge runs between verts j and i, and the loop is
* done once per edge. In detail:
*
* 1. Start by setting i and j:
* i = 0
* j = nvert-1
* 2. If i<nvert is false then exit the loop.
* 3. Do the loop body.
* 4. Set j=i and then
* add 1 to i and then
* 5. Go back to step 2.
*
*
*
* Converting the Code to All Integers
*
* If you want to convert the code from floats to integers, consider these
* issues.
*
* 1. On many current processors floats are at least as fast as ints.
* 2. If you move the denominator over to the other side of the
* inequality, remember that, when the denominator is negative, the
* inequality will flip.
* 3. If coordinates are large enough, the multiplication will silently
* overflow.
*
*
* License to Use
* Copyright (c) 1970-2003, Wm. Randolph Franklin
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimers.
* 2. Redistributions in binary form must reproduce the above copyright
* notice in the documentation and/or other materials provided with
* the distribution.
* 3. The name of W. Randolph Franklin may not be used to endorse or
* promote products derived from this Software without specific prior
* written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*
* Copyright © 1994-2006, W Randolph Franklin (WRF)
* <http://wrfranklin.org/> You may use my material for non-profit research
* and education, provided that you credit me, and link back to my home page.
* http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html,
* 05/20/2008 20:36:42
*/
bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
int istart,
int iend,
int refx,
int refy )
/** Function TestPointInsidePolygon
* test if a point is inside or outside a polygon.
* @param aPolysList: the list of polygons
* @param istart: the starting point of a given polygon in m_FilledPolysList.
* @param iend: the ending point of the polygon in m_FilledPolysList.
* @param refx, refy: the point coordinate to test
* @return true if the point is inside, false for outside
*/
{
double ref_pointX = refx;
double ref_pointY = refy;
bool inside = false;
for( int ii = istart, jj = iend; ii <= iend; jj = ii++ )
{
double seg_startX, seg_startY; // starting point for the segment to test
seg_startX = aPolysList[ii].x;
seg_startY = aPolysList[ii].y;
double seg_endX, seg_endY; // ending point for the segment to test
seg_endX = aPolysList[jj].x;
seg_endY = aPolysList[jj].y;
if( ( ( seg_startY > ref_pointY ) != (seg_endY > ref_pointY ) )
&& (ref_pointX <
(seg_endX -
seg_startX) * (ref_pointY - seg_startY) / (seg_endY - seg_startY) + seg_startX) )
inside = not inside;
}
return inside;
}
#else
/* this algo come from freePCB.
*/
bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
int istart,
int iend,
int refx,
int refy )
/** Function TestPointInsidePolygon
* test if a point is inside or outside a polygon.
* if a point is on a outline segment, it is considered outside the polygon
* @param aPolysList: the list of polygons
* @param istart: the starting point of a given polygon in m_FilledPolysList.
* @param iend: the ending point of the polygon in m_FilledPolysList.
* @param refx,refy: the point coordinate to test
* @return true if the point is inside, false for outside
* this algorithm come from FreePCB.
*/
{
#define OUTSIDE_IF_ON_SIDE 0 // = 1 if we consider point on a side outside the polygon
// define line passing through (x,y), with slope = 0 (horizontal line)
// get intersection points
// count intersection points to right of (x,y), if odd (x,y) is inside polyline
int xx, yy;
double slope = 0;
double a = refy - slope * refx;
int ics, ice;
bool inside = false;
// find all intersection points of line with polyline sides
for( ics = istart, ice = iend; ics <= iend; ice = ics++ )
{
double x, y, x2, y2;
int ok = FindLineSegmentIntersection( a, slope,
aPolysList[ics].x, aPolysList[ics].y,
aPolysList[ice].x, aPolysList[ice].y,
0,
&x, &y,
&x2, &y2 );
if( ok )
{
xx = (int) x;
yy = (int) y;
#if OUTSIDE_IF_ON_SIDE
if( xx == refx && yy == refy )
return false; // (x,y) is on a side, call it outside
else
#endif
if( xx > refx )
inside = not inside;
}
if( ok == 2 )
{
xx = (int) x2;
yy = (int) y2;
#if OUTSIDE_IF_ON_SIDE
if( xx == refx && yy == refy )
return false; // (x,y) is on a side, call it outside
else
#endif
if( xx > refx )
inside = not inside;
}
}
return inside;
}
#endif
/////////////////////////////////////////////////////////////////////////////
// Name: polygon_test_point_inside.h
/////////////////////////////////////////////////////////////////////////////
using namespace std;
/** Function TestPointInsidePolygon
* test if a point is inside or outside a polygon.
* @param aPolysList: the list of polygons
* @param istart: the starting point of a given polygon in m_FilledPolysList.
* @param iend: the ending point of the polygon in m_FilledPolysList.
* @param refx, refy: the point coordinate to test
* @return true if the point is inside, false for outside
*/
bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
int istart,
int iend,
int refx,
int refy);
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment