Commit 6f7209aa authored by dickelbeck's avatar dickelbeck

start of new search stuff, beautification

parent abd187e3
......@@ -5,6 +5,12 @@ Please add newer entries at the top, list the date and your name with
email address.
2007-Aug-06 UPDATE Dick Hollenbeck <dick@softplc.com>
================================================================================
+ pcbnew & common
Started sketching out a new search architecture. To learn more:
look for "INSPECTOR" text in base_struct.h.
2007-Aug-05 UPDATE Dick Hollenbeck <dick@softplc.com>
================================================================================
......
......@@ -224,10 +224,46 @@ void EDA_BaseStruct::Show( int nestLevel, std::ostream& os )
std::ostream& EDA_BaseStruct::NestedSpace( int nestLevel, std::ostream& os )
{
for( int i=0; i<nestLevel; ++i )
os << ' '; // number of spaces here controls indent per nest level
os << " "; // number of spaces here controls indent per nest level
return os;
}
// see base_struct.h
SEARCH_RESULT EDA_BaseStruct::IterateForward( EDA_BaseStruct* listStart,
INSPECTOR* inspector, void* testData, const KICAD_T scanTypes[] )
{
EDA_BaseStruct* p = listStart;
for( ; p; p = p->Pnext )
{
if( SEARCH_QUIT == p->Traverse( inspector, testData, scanTypes ) )
return SEARCH_QUIT;
}
return SEARCH_CONTINUE;
}
// see base_struct.h
SEARCH_RESULT EDA_BaseStruct::Traverse( INSPECTOR* inspector, void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
for( const KICAD_T* p = scanTypes; (stype=*p) != EOT; ++p )
{
// If caller wants to inspect my type
if( stype == m_StructType )
{
if( SEARCH_QUIT == inspector->Inspect( this, testData ) )
return SEARCH_QUIT;
break;
}
}
return SEARCH_CONTINUE;
}
#endif
......
......@@ -13,6 +13,9 @@
/* Id for class identification, at run time */
enum DrawStructureType {
EOT = 0, // search types array terminator (End Of Types)
TYPE_NOT_INIT = 0,
TYPEPCB,
......@@ -70,6 +73,49 @@ enum DrawStructureType {
};
#if defined(DEBUG) // new searching technique incubator
enum SEARCH_RESULT {
SEARCH_QUIT,
SEARCH_CONTINUE
};
typedef DrawStructureType KICAD_T; // shorter name
class EDA_BaseStruct;
/**
* Class INSPECTOR
* is an abstract class that is used to inspect and possibly collect the
* (search) results of Iterating over a list or tree of KICAD_T objects.
* Extend from this class and implment the Inspect function and provide for
* a way for the extension to collect the results of the search/scan data and
* provide them to the caller.
*/
class INSPECTOR
{
public:
virtual ~INSPECTOR() {}
/**
* Function Inspect
* is the function type that can be passed to the Iterate function,
* used primarily for searching, but not exclusively.
* @param testData is arbitrary data needed by the inspector to determine
* if the EDA_BaseStruct under test meets its match criteria.
* @return SEARCH_RESULT - SEARCH_QUIT if the Iterator is to stop the scan,
* else SCAN_CONTINUE;
*/
SEARCH_RESULT virtual Inspect( EDA_BaseStruct* testItem,
void* testData ) = 0;
// derived classes add more functions for collecting and subsequent
// retrieval here.
};
#endif
/********************************************************************/
/* Classes de base: servent a deriver les classes reellement utiles */
/********************************************************************/
......@@ -138,6 +184,7 @@ public:
* @param os The ostream& to output to.
*/
virtual void Show( int nestLevel, std::ostream& os );
/**
* Function NestedSpace
......@@ -147,6 +194,60 @@ public:
* @return std::ostream& - for continuation.
**/
static std::ostream& NestedSpace( int nestLevel, std::ostream& os );
/**
* Function IterateForward
* walks through the object tree calling the testFunc on each object
* type requested in structTypes.
*
* @param listStart The first in a list of EDA_BaseStructs to iterate over.
* @param inspector Is an INSPECTOR to call on each object that is of one of
* the requested itemTypes.
* @param testData Is an aid to testFunc, and should be sufficient to
* allow it to fully determine if an item meets the match criteria, but it
* may also be used to collect output.
* @param scanTypes Is a char array of KICAD_T that is EOT
* terminated, and provides both the order and interest level of of
* the types of objects to be iterated over.
* @return SEARCH_RESULT - SEARCH_QUIT if the Iterator is to stop the scan,
* else SCAN_CONTINUE;
*/
static SEARCH_RESULT IterateForward( EDA_BaseStruct* listStart,
INSPECTOR* inspector, void* testData, const KICAD_T scanTypes[] );
/**
* Function Traverse
* should be re-implemented for each derrived class in order to handle
* all the types given by its member data. Implementations should call
* inspector->Inspect() on types in scanTypes[], and may use IterateForward()
* to do so on lists of such data.
* @param inspector An INSPECTOR instance to use in the inspection.
* @param testData Arbitrary data used by the inspector.
* @param scanTypes Which KICAD_T types are of interest and the order
* is significant too, terminated by EOT.
* @return SEARCH_RESULT - SEARCH_QUIT if the Iterator is to stop the scan,
* else SCAN_CONTINUE;
*/
virtual SEARCH_RESULT Traverse( INSPECTOR* inspector, void* testData,
const KICAD_T scanTypes[] );
/**
* Function ListHas
* scans the given array and detects if the given type t is present.
* @param list An array of KICAD_T, terminated with EOT.
* @param t A KICAD_T to check for.
* @return bool - true if present, else false.
*/
static bool ListHas( const KICAD_T list[], KICAD_T t )
{
for( const KICAD_T* p = list; *p != EOT; ++p )
if( *p == t )
return true;
return false;
}
#endif
};
......
......@@ -242,6 +242,16 @@ public:
* @param os The ostream& to output to.
*/
virtual void Show( int nestLevel, std::ostream& os );
/**
* Function FindModuleOrPad
* searches for either a module or a pad, giving precedence to pads.
* @param refPos The wxPoint to hit-test.
* @return EDA_BaseStruct* - if a direct hit, else NULL.
*/
EDA_BaseStruct* FindModuleOrPad( const wxPoint& refPos );
#endif
};
......
......@@ -286,4 +286,62 @@ void BOARD::Show( int nestLevel, std::ostream& os )
NestedSpace( nestLevel, os ) << "</" << ReturnClassName().mb_str() << ">\n";
}
class ModuleOrPad : public INSPECTOR
{
public:
EDA_BaseStruct* found;
ModuleOrPad() :
found(0)
{
}
SEARCH_RESULT Inspect( EDA_BaseStruct* testItem, void* testData )
{
const wxPoint* refPos = (const wxPoint*) testData;
if( testItem->m_StructType == TYPEMODULE )
{
/* not finished
if( testItem->HitTest( &refPos ) )
{
found = testItem;
return SEARCH_QUIT;
}
*/
}
else if( testItem->m_StructType == TYPEPAD )
{
/* not finished
if( testItem->HitTest( &refPos ) )
{
found = testItem;
return SEARCH_QUIT;
}
*/
}
return SEARCH_CONTINUE;
}
};
// see pcbstruct.h
EDA_BaseStruct* BOARD::FindModuleOrPad( const wxPoint& refPos )
{
ModuleOrPad inspector;
static const KICAD_T scanTypes[] = { TYPEMODULE, TYPEPAD, EOT };
if( SEARCH_QUIT == IterateForward( m_Modules, &inspector, (void*) &refPos, scanTypes ) )
return inspector.found;
return NULL;
}
#endif
/****************************************************/
/* class_module.cpp : fonctions de la classe MODULE */
/****************************************************/
/****************************************************/
/* class_module.cpp : fonctions de la classe MODULE */
/****************************************************/
#include "fctsys.h"
#include "gr_basic.h"
......@@ -22,54 +22,59 @@
#include "protos.h"
#define MAX_WIDTH 10000 // Epaisseur (en 1/10000 ") max raisonnable des traits, textes...
#define MAX_WIDTH 10000 // Epaisseur (en 1/10000 ") max raisonnable des traits, textes...
/******************************************/
/* class EDGE_MODULE ( contour de module ) */
/******************************************/
/******************************************/
/* class EDGE_MODULE ( contour de module ) */
/******************************************/
EDGE_MODULE::EDGE_MODULE(MODULE * parent): EDA_BaseLineStruct( parent, TYPEEDGEMODULE)
EDGE_MODULE::EDGE_MODULE( MODULE* parent ) :
EDA_BaseLineStruct( parent, TYPEEDGEMODULE )
{
m_Shape = S_SEGMENT;
m_Angle = 0;
m_Width = 120;
m_PolyCount = 0; // For polygons : number of points (> 2)
m_PolyList = NULL; // For polygons: coord list (1 point = 2 coord)
m_Shape = S_SEGMENT;
m_Angle = 0;
m_Width = 120;
m_PolyCount = 0; // For polygons : number of points (> 2)
m_PolyList = NULL; // For polygons: coord list (1 point = 2 coord)
}
EDGE_MODULE::~EDGE_MODULE()
{
if ( m_PolyList ) free (m_PolyList);
m_PolyList = NULL;
m_PolyCount = 0;
if( m_PolyList )
free( m_PolyList );
m_PolyList = NULL;
m_PolyCount = 0;
}
/********************************************/
void EDGE_MODULE:: Copy(EDGE_MODULE * source) // copy structure
void EDGE_MODULE:: Copy( EDGE_MODULE* source ) // copy structure
/********************************************/
{
if (source == NULL) return;
m_Start = source->m_Start;
m_End = source->m_End;
m_Shape = source->m_Shape;
m_Start0 = source->m_Start0; // coord relatives a l'ancre du point de depart(Orient 0)
m_End0 = source->m_End0; // coord relatives a l'ancre du point de fin (Orient 0)
m_Angle = source->m_Angle; // pour les arcs de cercle: longueur de l'arc en 0,1 degres
m_Layer = source->m_Layer;
m_Width = source->m_Width;
if ( m_PolyList ) free (m_PolyList);
m_PolyCount = 0;
m_PolyList = NULL;
if ( source->m_PolyCount && source->m_PolyList )
{
int size;
m_PolyCount = source->m_PolyCount; // For polygons : number of points
size = m_PolyCount * 2 * sizeof(int); // For polygons: 1 point = 2 coord
m_PolyList = (int*) MyMalloc( size );
memcpy (m_PolyList, source->m_PolyList, size);
}
if( source == NULL )
return;
m_Start = source->m_Start;
m_End = source->m_End;
m_Shape = source->m_Shape;
m_Start0 = source->m_Start0; // coord relatives a l'ancre du point de depart(Orient 0)
m_End0 = source->m_End0; // coord relatives a l'ancre du point de fin (Orient 0)
m_Angle = source->m_Angle; // pour les arcs de cercle: longueur de l'arc en 0,1 degres
m_Layer = source->m_Layer;
m_Width = source->m_Width;
if( m_PolyList )
free( m_PolyList );
m_PolyCount = 0;
m_PolyList = NULL;
if( source->m_PolyCount && source->m_PolyList )
{
int size;
m_PolyCount = source->m_PolyCount; // For polygons : number of points
size = m_PolyCount * 2 * sizeof(int); // For polygons: 1 point = 2 coord
m_PolyList = (int*) MyMalloc( size );
memcpy( m_PolyList, source->m_PolyList, size );
}
}
......@@ -77,333 +82,371 @@ void EDGE_MODULE:: Copy(EDGE_MODULE * source) // copy structure
void EDGE_MODULE::UnLink( void )
/********************************/
{
/* Modification du chainage arriere */
if( Pback )
{
if( Pback->m_StructType != TYPEMODULE)
{
Pback->Pnext = Pnext;
}
else /* Le chainage arriere pointe sur la structure "Pere" */
{
((MODULE*) Pback)->m_Drawings = Pnext;
}
}
/* Modification du chainage avant */
if( Pnext) Pnext->Pback = Pback;
Pnext = Pback = NULL;
/* Modification du chainage arriere */
if( Pback )
{
if( Pback->m_StructType != TYPEMODULE )
{
Pback->Pnext = Pnext;
}
else /* Le chainage arriere pointe sur la structure "Pere" */
{
( (MODULE*) Pback )->m_Drawings = Pnext;
}
}
/* Modification du chainage avant */
if( Pnext )
Pnext->Pback = Pback;
Pnext = Pback = NULL;
}
/***********************************/
void EDGE_MODULE::SetDrawCoord(void)
void EDGE_MODULE::SetDrawCoord( void )
/***********************************/
{
MODULE * Module = (MODULE*) m_Parent;
m_Start = m_Start0;
m_End = m_End0;
if ( Module )
{
RotatePoint( &m_Start.x, &m_Start.y, Module->m_Orient);
RotatePoint( &m_End.x, &m_End.y, Module->m_Orient);
m_Start.x += Module->m_Pos.x;
m_Start.y += Module->m_Pos.y;
m_End.x += Module->m_Pos.x;
m_End.y += Module->m_Pos.y;
}
MODULE* Module = (MODULE*) m_Parent;
m_Start = m_Start0;
m_End = m_End0;
if( Module )
{
RotatePoint( &m_Start.x, &m_Start.y, Module->m_Orient );
RotatePoint( &m_End.x, &m_End.y, Module->m_Orient );
m_Start.x += Module->m_Pos.x;
m_Start.y += Module->m_Pos.y;
m_End.x += Module->m_Pos.x;
m_End.y += Module->m_Pos.y;
}
}
/********************************************************************************/
void EDGE_MODULE::Draw(WinEDA_DrawPanel * panel, wxDC * DC,
const wxPoint & offset, int draw_mode)
void EDGE_MODULE::Draw( WinEDA_DrawPanel* panel, wxDC* DC,
const wxPoint& offset, int draw_mode )
/********************************************************************************/
/* Affichage d'un segment contour de module :
Entree : ox, oy = offset de trace
draw_mode = mode de trace ( GR_OR, GR_XOR, GR_AND)
Les contours sont de differents type:
- Segment
- Cercles
- Arcs
*/
* Entree : ox, oy = offset de trace
* draw_mode = mode de trace ( GR_OR, GR_XOR, GR_AND)
* Les contours sont de differents type:
* - Segment
* - Cercles
* - Arcs
*/
{
int ux0, uy0, dx, dy,rayon, StAngle, EndAngle;
int color , type_trace;
int zoom;
int typeaff;
PCB_SCREEN * screen;
WinEDA_BasePcbFrame * frame;
MODULE * Module = NULL;
if ( m_Parent && (m_Parent->m_StructType == TYPEMODULE) )
Module = (MODULE*) m_Parent;
color = g_DesignSettings.m_LayerColor[m_Layer];
if ( (color & ITEM_NOT_SHOW) != 0 ) return;
if ( panel ) screen = (PCB_SCREEN *) panel->m_Parent->m_CurrentScreen;
else screen = (PCB_SCREEN *) ActiveScreen;
frame = ( WinEDA_BasePcbFrame * ) panel->m_Parent;
zoom = screen->GetZoom();
type_trace = m_Shape;
ux0 = m_Start.x - offset.x; uy0 = m_Start.y - offset.y;
dx = m_End.x - offset.x ;
dy = m_End.y - offset.y ;
GRSetDrawMode(DC, draw_mode);
typeaff = frame->m_DisplayModEdge;
if( m_Layer <= CMP_N )
{
typeaff = frame->m_DisplayPcbTrackFill;
if ( ! typeaff ) typeaff = SKETCH;
}
if( (m_Width /zoom) < L_MIN_DESSIN ) typeaff = FILAIRE;
switch (type_trace )
{
case S_SEGMENT:
if( typeaff == FILAIRE)
GRLine(&panel->m_ClipBox, DC, ux0, uy0, dx, dy, 0, color);
else if( typeaff == FILLED)
GRLine(&panel->m_ClipBox, DC, ux0, uy0, dx, dy, m_Width, color) ;
else // SKETCH Mode
GRCSegm(&panel->m_ClipBox, DC, ux0, uy0, dx, dy, m_Width, color) ;
break ;
case S_CIRCLE:
rayon = (int)hypot((double)(dx-ux0),(double)(dy-uy0) );
if( typeaff == FILAIRE)
{
GRCircle(&panel->m_ClipBox, DC, ux0, uy0, rayon, color) ;
}
else
{
if(typeaff == FILLED )
{
GRCircle(&panel->m_ClipBox, DC, ux0, uy0, rayon, m_Width, color);
}
else // SKETCH Mode
{
GRCircle(&panel->m_ClipBox, DC, ux0, uy0, rayon + (m_Width/2), color) ;
GRCircle(&panel->m_ClipBox, DC, ux0, uy0, rayon - (m_Width/2), color) ;
}
}
break;
case S_ARC:
rayon = (int)hypot((double)(dx-ux0),(double)(dy-uy0) );
StAngle = (int)ArcTangente( dy-uy0, dx-ux0 );
EndAngle = StAngle + m_Angle;
if ( StAngle > EndAngle) EXCHG (StAngle, EndAngle);
if( typeaff == FILAIRE)
{
GRArc(&panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle, rayon, color) ;
}
else if(typeaff == FILLED )
{
GRArc(&panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle, rayon,
m_Width, color);
}
else // SKETCH Mode
{
GRArc(&panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle,
rayon + (m_Width/2), color) ;
GRArc(&panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle,
rayon - (m_Width/2), color) ;
}
break;
case S_POLYGON:
{
// We must compute true coordinates from m_PolyList
// which are relative to module position, orientation 0
int ii, * source, * ptr, * ptr_base;
ptr = ptr_base = (int*) MyMalloc( 2 * m_PolyCount * sizeof(int) );
source = m_PolyList;
for (ii = 0; ii < m_PolyCount; ii++ )
{
int x, y;
x = *source; source++; y = *source; source++;
if ( Module )
{
RotatePoint (&x, &y, Module->m_Orient);
x += Module->m_Pos.x;
y += Module->m_Pos.y;
}
x += m_Start0.x - offset.x;
y += m_Start0.y - offset.y;
*ptr = x; ptr++; *ptr = y; ptr++;
}
GRPoly(&panel->m_ClipBox, DC, m_PolyCount, ptr_base,
TRUE, m_Width, color, color);
free ( ptr_base);
break;
}
}
int ux0, uy0, dx, dy, rayon, StAngle, EndAngle;
int color, type_trace;
int zoom;
int typeaff;
PCB_SCREEN* screen;
WinEDA_BasePcbFrame* frame;
MODULE* Module = NULL;
if( m_Parent && (m_Parent->m_StructType == TYPEMODULE) )
Module = (MODULE*) m_Parent;
color = g_DesignSettings.m_LayerColor[m_Layer];
if( (color & ITEM_NOT_SHOW) != 0 )
return;
if( panel )
screen = (PCB_SCREEN*) panel->m_Parent->m_CurrentScreen;
else
screen = (PCB_SCREEN*) ActiveScreen;
frame = (WinEDA_BasePcbFrame*) panel->m_Parent;
zoom = screen->GetZoom();
type_trace = m_Shape;
ux0 = m_Start.x - offset.x; uy0 = m_Start.y - offset.y;
dx = m_End.x - offset.x;
dy = m_End.y - offset.y;
GRSetDrawMode( DC, draw_mode );
typeaff = frame->m_DisplayModEdge;
if( m_Layer <= CMP_N )
{
typeaff = frame->m_DisplayPcbTrackFill;
if( !typeaff )
typeaff = SKETCH;
}
if( (m_Width / zoom) < L_MIN_DESSIN )
typeaff = FILAIRE;
switch( type_trace )
{
case S_SEGMENT:
if( typeaff == FILAIRE )
GRLine( &panel->m_ClipBox, DC, ux0, uy0, dx, dy, 0, color );
else if( typeaff == FILLED )
GRLine( &panel->m_ClipBox, DC, ux0, uy0, dx, dy, m_Width, color );
else
// SKETCH Mode
GRCSegm( &panel->m_ClipBox, DC, ux0, uy0, dx, dy, m_Width, color );
break;
case S_CIRCLE:
rayon = (int) hypot( (double) (dx - ux0), (double) (dy - uy0) );
if( typeaff == FILAIRE )
{
GRCircle( &panel->m_ClipBox, DC, ux0, uy0, rayon, color );
}
else
{
if( typeaff == FILLED )
{
GRCircle( &panel->m_ClipBox, DC, ux0, uy0, rayon, m_Width, color );
}
else // SKETCH Mode
{
GRCircle( &panel->m_ClipBox, DC, ux0, uy0, rayon + (m_Width / 2), color );
GRCircle( &panel->m_ClipBox, DC, ux0, uy0, rayon - (m_Width / 2), color );
}
}
break;
case S_ARC:
rayon = (int) hypot( (double) (dx - ux0), (double) (dy - uy0) );
StAngle = (int) ArcTangente( dy - uy0, dx - ux0 );
EndAngle = StAngle + m_Angle;
if( StAngle > EndAngle )
EXCHG( StAngle, EndAngle );
if( typeaff == FILAIRE )
{
GRArc( &panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle, rayon, color );
}
else if( typeaff == FILLED )
{
GRArc( &panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle, rayon,
m_Width, color );
}
else // SKETCH Mode
{
GRArc( &panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle,
rayon + (m_Width / 2), color );
GRArc( &panel->m_ClipBox, DC, ux0, uy0, StAngle, EndAngle,
rayon - (m_Width / 2), color );
}
break;
case S_POLYGON:
{
// We must compute true coordinates from m_PolyList
// which are relative to module position, orientation 0
int ii, * source, * ptr, * ptr_base;
ptr = ptr_base = (int*) MyMalloc( 2 * m_PolyCount * sizeof(int) );
source = m_PolyList;
for( ii = 0; ii < m_PolyCount; ii++ )
{
int x, y;
x = *source; source++; y = *source; source++;
if( Module )
{
RotatePoint( &x, &y, Module->m_Orient );
x += Module->m_Pos.x;
y += Module->m_Pos.y;
}
x += m_Start0.x - offset.x;
y += m_Start0.y - offset.y;
*ptr = x; ptr++; *ptr = y; ptr++;
}
GRPoly( &panel->m_ClipBox, DC, m_PolyCount, ptr_base,
TRUE, m_Width, color, color );
free( ptr_base );
break;
}
}
}
/*****************************************/
int EDGE_MODULE::WriteDescr( FILE * File )
int EDGE_MODULE::WriteDescr( FILE* File )
/*****************************************/
/* Write one EDGE_MODULE description
File must be opened.
*/
* File must be opened.
*/
{
int NbLigne = 0, ii, *ptr;
switch(m_Shape )
{
case S_SEGMENT:
fprintf(File,"DS %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_Width, m_Layer);
NbLigne++;
break;
case S_CIRCLE:
fprintf(File,"DC %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_Width, m_Layer);
NbLigne++;
break;
case S_ARC:
fprintf(File,"DA %d %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_Angle,
m_Width, m_Layer);
NbLigne++;
break;
case S_POLYGON:
fprintf(File,"DP %d %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_PolyCount,
m_Width, m_Layer);
NbLigne++;
for ( ii = 0, ptr = m_PolyList; ii < m_PolyCount; ii++ )
{
fprintf(File,"Dl %d %d\n",
*ptr, *(ptr+1));
NbLigne++; ptr += 2;
}
break;
default:
DisplayError(NULL, wxT("Type Edge Module inconnu") );
break;
}
return(NbLigne);
int NbLigne = 0, ii, * ptr;
switch( m_Shape )
{
case S_SEGMENT:
fprintf( File, "DS %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_Width, m_Layer );
NbLigne++;
break;
case S_CIRCLE:
fprintf( File, "DC %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_Width, m_Layer );
NbLigne++;
break;
case S_ARC:
fprintf( File, "DA %d %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_Angle,
m_Width, m_Layer );
NbLigne++;
break;
case S_POLYGON:
fprintf( File, "DP %d %d %d %d %d %d %d\n",
m_Start0.x, m_Start0.y,
m_End0.x, m_End0.y,
m_PolyCount,
m_Width, m_Layer );
NbLigne++;
for( ii = 0, ptr = m_PolyList; ii < m_PolyCount; ii++ )
{
fprintf( File, "Dl %d %d\n",
*ptr, *(ptr + 1) );
NbLigne++; ptr += 2;
}
break;
default:
DisplayError( NULL, wxT( "Type Edge Module inconnu" ) );
break;
}
return NbLigne;
}
/****************************************************************/
int EDGE_MODULE::ReadDescr(char * Line, FILE * File,
int * LineNum)
int EDGE_MODULE::ReadDescr( char* Line, FILE* File,
int* LineNum )
/***************************************************************/
/* Read a description line like:
DS 2600 0 2600 -600 120 21
this description line is in Line
EDGE_MODULE type can be:
- Circle,
- Segment (line)
- Arc
- Polygon
*/
* DS 2600 0 2600 -600 120 21
* this description line is in Line
* EDGE_MODULE type can be:
* - Circle,
* - Segment (line)
* - Arc
* - Polygon
*
*/
{
int ii, *ptr;
int error = 0;
char Buf[1024];
switch ( Line[1] )
{
case 'S':
m_Shape = S_SEGMENT;
break;
case 'C':
m_Shape = S_CIRCLE;
break;
case 'A':
m_Shape = S_ARC;
break;
case 'P':
m_Shape = S_POLYGON;
break;
default:
wxString msg;
msg.Printf( wxT("Unknown EDGE_MODULE type <%s>") , Line);
DisplayError(NULL, msg);
error = 1;
break;
}
switch ( m_Shape )
{
case S_ARC:
sscanf(Line+3,"%d %d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_Angle, &m_Width, &m_Layer);
break;
case S_SEGMENT:
case S_CIRCLE:
sscanf(Line+3,"%d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_Width, &m_Layer);
break;
case S_POLYGON:
sscanf(Line+3,"%d %d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_PolyCount, &m_Width, &m_Layer);
(*LineNum)++;
m_PolyList = (int*) MyZMalloc( 2 * m_PolyCount * sizeof(int) );
for ( ii = 0, ptr = m_PolyList; ii < m_PolyCount; ii++ )
{
if( GetLine(File, Buf, LineNum , sizeof(Buf) -1) != NULL )
{
if( strncmp(Buf, "Dl", 2) != 0 ) { error = 1; break;}
sscanf(Buf+3,"%d %d\n", ptr, ptr+1);
(*LineNum)++; ptr += 2;
}
else {
error = 1; break;
}
}
break;
default:
sscanf(Line+3,"%d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_Width, &m_Layer);
break;
}
// Controle d'epaisseur raisonnable:
if( m_Width <= 1 ) m_Width = 1;
if( m_Width > MAX_WIDTH ) m_Width = MAX_WIDTH;
return error;
int ii, * ptr;
int error = 0;
char Buf[1024];
switch( Line[1] )
{
case 'S':
m_Shape = S_SEGMENT;
break;
case 'C':
m_Shape = S_CIRCLE;
break;
case 'A':
m_Shape = S_ARC;
break;
case 'P':
m_Shape = S_POLYGON;
break;
default:
wxString msg;
msg.Printf( wxT( "Unknown EDGE_MODULE type <%s>" ), Line );
DisplayError( NULL, msg );
error = 1;
break;
}
switch( m_Shape )
{
case S_ARC:
sscanf( Line + 3, "%d %d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_Angle, &m_Width, &m_Layer );
break;
case S_SEGMENT:
case S_CIRCLE:
sscanf( Line + 3, "%d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_Width, &m_Layer );
break;
case S_POLYGON:
sscanf( Line + 3, "%d %d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_PolyCount, &m_Width, &m_Layer );
(*LineNum)++;
m_PolyList = (int*) MyZMalloc( 2 * m_PolyCount * sizeof(int) );
for( ii = 0, ptr = m_PolyList; ii < m_PolyCount; ii++ )
{
if( GetLine( File, Buf, LineNum, sizeof(Buf) - 1 ) != NULL )
{
if( strncmp( Buf, "Dl", 2 ) != 0 )
{
error = 1; break;
}
sscanf( Buf + 3, "%d %d\n", ptr, ptr + 1 );
(*LineNum)++; ptr += 2;
}
else
{
error = 1; break;
}
}
break;
default:
sscanf( Line + 3, "%d %d %d %d %d %d",
&m_Start0.x, &m_Start0.y,
&m_End0.x, &m_End0.y,
&m_Width, &m_Layer );
break;
}
// Controle d'epaisseur raisonnable:
if( m_Width <= 1 )
m_Width = 1;
if( m_Width > MAX_WIDTH )
m_Width = MAX_WIDTH;
return error;
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void EDGE_MODULE::Show( int nestLevel, std::ostream& os )
{
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << ReturnClassName().mb_str() << "/>\n";
}
#endif
/**************************************************************/
/* class_edge_module.h : description des contours d'un module */
/**************************************************************/
/**************************************************************/
/* class_edge_module.h : description des contours d'un module */
/**************************************************************/
class Pcb3D_GLCanvas;
/* description des contours (empreintes ) et TYPES des CONTOURS : */
class EDGE_MODULE: public EDA_BaseLineStruct
{
public:
int m_Shape ; // voir "enum Track_Shapes"
wxPoint m_Start0; // coord relatives a l'ancre du point de depart(Orient 0)
wxPoint m_End0; // coord relatives a l'ancre du point de fin (Orient 0)
int m_Angle; // pour les arcs de cercle: longueur de l'arc en 0,1 degres
int m_PolyCount; // For polygons : number of points (> 2)
int * m_PolyList; // For polygons: coord list (1 point = 2 coord)
// Coord are relative to Origine, orient 0
public:
EDGE_MODULE(MODULE * parent );
EDGE_MODULE(EDGE_MODULE * edge );
~EDGE_MODULE();
/* supprime du chainage la structure Struct */
void UnLink( void );
void Copy(EDGE_MODULE * source); // copy structure
/* Readind and writing data on files */
int WriteDescr( FILE * File );
int ReadDescr( char * Line, FILE * File, int * LineNum = NULL);
// Mise a jour des coordonées pour l'affichage
void SetDrawCoord(void);
/* drawing functions */
void Draw(WinEDA_DrawPanel * panel, wxDC * DC, const wxPoint & offset,
int draw_mode);
void Draw3D(Pcb3D_GLCanvas * glcanvas);
class EDGE_MODULE : public EDA_BaseLineStruct
{
public:
int m_Shape; // voir "enum Track_Shapes"
wxPoint m_Start0; // coord relatives a l'ancre du point de depart(Orient 0)
wxPoint m_End0; // coord relatives a l'ancre du point de fin (Orient 0)
int m_Angle; // pour les arcs de cercle: longueur de l'arc en 0,1 degres
int m_PolyCount; // For polygons : number of points (> 2)
int* m_PolyList; // For polygons: coord list (1 point = 2 coord)
// Coord are relative to Origin, orient 0
public:
EDGE_MODULE( MODULE* parent );
EDGE_MODULE( EDGE_MODULE* edge );
~EDGE_MODULE();
/* supprime du chainage la structure Struct */
void UnLink( void );
void Copy( EDGE_MODULE* source ); // copy structure
/* Reading and writing data on files */
int WriteDescr( FILE* File );
int ReadDescr( char* Line, FILE* File, int* LineNum = NULL );
// Mise a jour des coordon�s pour l'affichage
void SetDrawCoord( void );
/* drawing functions */
void Draw( WinEDA_DrawPanel* panel, wxDC* DC, const wxPoint& offset,
int draw_mode );
void Draw3D( Pcb3D_GLCanvas* glcanvas );
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
virtual void Show( int nestLevel, std::ostream& os );
#endif
};
......@@ -208,7 +208,9 @@ void MODULE::Copy( MODULE* Module )
/* Copy des elements complementaires Drawings 3D */
m_3D_Drawings->Copy( Module->m_3D_Drawings );
Struct3D_Master* Struct3D, * NewStruct3D, * CurrStruct3D;
Struct3D = (Struct3D_Master*) Module->m_3D_Drawings->Pnext;
CurrStruct3D = m_3D_Drawings;
for( ; Struct3D != NULL; Struct3D = (Struct3D_Master*) Struct3D->Pnext )
......@@ -370,6 +372,7 @@ int MODULE::WriteDescr( FILE* File )
StringStat[0] = 'F';
else
StringStat[0] = '~';
if( m_ModuleStatus & MODULE_is_PLACED )
StringStat[1] = 'P';
else
......@@ -649,9 +652,9 @@ int MODULE::ReadDescr( FILE* File, int* LineNum )
Read_3D_Descr( File, LineNum );
}
if( strlen( Line ) < 4 )
continue;
PtLine = Line + 3;
/* Pointe 1er code utile de la ligne */
......@@ -811,13 +814,16 @@ void MODULE::SetPosition( const wxPoint& newpos )
int deltaY = newpos.y - m_Pos.y;
/* deplacement de l'ancre */
m_Pos.x += deltaX; m_Pos.y += deltaY;
m_Pos.x += deltaX;
m_Pos.y += deltaY;
/* deplacement de la reference */
m_Reference->m_Pos.x += deltaX; m_Reference->m_Pos.y += deltaY;
m_Reference->m_Pos.x += deltaX;
m_Reference->m_Pos.y += deltaY;
/* deplacement de la Valeur */
m_Value->m_Pos.x += deltaX; m_Value->m_Pos.y += deltaY;
m_Value->m_Pos.x += deltaX;
m_Value->m_Pos.y += deltaY;
/* deplacement des pastilles */
D_PAD* pad = m_Pads;
......@@ -1153,22 +1159,70 @@ void MODULE::Show( int nestLevel, std::ostream& os )
// for now, make it look like XML, expand on this later.
NestedSpace( nestLevel, os ) << '<' << ReturnClassName().mb_str() <<
" ref=\"" << m_Reference->m_Text.mb_str() <<
// " ref=\"" << m_Reference->m_Text.mb_str() <<
// "\" value=\"" << m_Value->m_Text.mb_str() << '"' <<
">\n";
"\" value=\"" << m_Value->m_Text.mb_str() <<
"\">\n";
EDA_BaseStruct* p;
p = m_Reference;
for( ; p; p = p->Pnext )
p->Show( nestLevel+1, os );
EDA_BaseStruct* p = m_Drawings;
p = m_Value;
for( ; p; p = p->Pnext )
p->Show( nestLevel+1, os );
EDA_BaseStruct* kid = m_Son;
for( ; kid; kid = kid->Pnext )
p = m_Drawings;
for( ; p; p = p->Pnext )
p->Show( nestLevel+1, os );
p = m_Son;
for( ; p; p = p->Pnext )
{
kid->Show( nestLevel+1, os );
p->Show( nestLevel+1, os );
}
NestedSpace( nestLevel, os ) << "</" << ReturnClassName().mb_str() << ">\n";
}
// see class_module.h
SEARCH_RESULT MODULE::Traverse( INSPECTOR* inspector, void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
for( const KICAD_T* p = scanTypes; (stype=*p) != EOT; ++p )
{
// If caller wants to inspect my type
if( stype == m_StructType )
{
if( SEARCH_QUIT == inspector->Inspect( this, testData ) )
return SEARCH_QUIT;
}
else if( stype == TYPEEDGEMODULE )
{
// iterate over m_Drawings
if( SEARCH_QUIT == IterateForward( m_Drawings, inspector,
testData, scanTypes ) )
return SEARCH_QUIT;
}
else if( stype == TYPETEXTEMODULE )
{
// iterate over m_Reference
if( SEARCH_QUIT == IterateForward( m_Reference, inspector,
testData, scanTypes ) )
return SEARCH_QUIT;
// iterate over m_Value
if( SEARCH_QUIT == IterateForward( m_Value, inspector,
testData, scanTypes ) )
return SEARCH_QUIT;
}
}
return SEARCH_CONTINUE;
}
#endif
......@@ -142,6 +142,24 @@ public:
* @param os The ostream& to output to.
*/
virtual void Show( int nestLevel, std::ostream& os );
/**
* Function Traverse
* should be re-implemented for each derrived class in order to handle
* all the types given by its member data. Implementations should call
* inspector->Inspect() on types in scanTypes[], and may use IterateForward()
* to do so on lists of such data.
* @param inspector An INSPECTOR instance to use in the inspection.
* @param testData Arbitrary data used by the inspector.
* @param scanTypes Which KICAD_T types are of interest and the order
* is significant too, terminated by EOT.
* @return SEARCH_RESULT - SEARCH_QUIT if the Iterator is to stop the scan,
* else SCAN_CONTINUE;
*/
virtual SEARCH_RESULT Traverse( INSPECTOR* inspector, void* testData,
const KICAD_T scanTypes[] );
#endif
};
/**********************************/
/* class_pad.h : Pads description */
/**********************************/
/**********************************/
/* class_pad.h : Pads description */
/**********************************/
class Pcb3D_GLCanvas;
/* forme des pastilles : (parametre .forme) */
#define CIRCLE 1
#define RECT 2
#define OVALE 3
#define TRAPEZE 4 // trapeze: traversante ou surfacique
#define SPECIAL_PAD 5 // description libre
#define CIRCLE 1
#define RECT 2
#define OVALE 3
#define TRAPEZE 4 // trapeze: traversante ou surfacique
#define SPECIAL_PAD 5 // description libre
/* Attributs des PADS */
#define STANDARD 0 // pad classique
#define SMD 1 // surfacique, generation d'un masque d'empatement
#define CONN 2 // surfacique, peut etre dore
#define P_HOLE 3 // trou simple, utile sur pad stack
#define MECA 4 // PAD "mecanique" (fixation, zone cuivre...)
#define PAD_STACK 0x80 // bit 7 de .attrib (flag)
#define STANDARD 0 // pad classique
#define SMD 1 // surfacique, generation d'un masque d'empatement
#define CONN 2 // surfacique, peut etre dore
#define P_HOLE 3 // trou simple, utile sur pad stack
#define MECA 4 // PAD "mecanique" (fixation, zone cuivre...)
#define PAD_STACK 0x80 // bit 7 de .attrib (flag)
/* Definition type Structure d'un pad */
class D_PAD: public EDA_BaseStruct
class D_PAD : public EDA_BaseStruct
{
public:
union {
unsigned long m_NumPadName;
char m_Padname[4] ; /* nom (numero) de la pastille (assimilable a un long)*/
};
wxString m_Netname; /* Net Name */
int m_Masque_Layer; // (Bit a Bit :1= cuivre, 15= cmp,
// 2..14 = interne
// 16 .. 31 = couches non cuivre
int m_PadShape; // forme CERCLE, RECT, OVALE, TRAPEZE ou libre
int m_DrillShape; // forme CERCLE, OVAL
wxPoint m_Pos; // Position de reference du pad
wxSize m_Drill; // Drill diam (drill shape = CIRCLE) or drill size(shape = OVAL)
// for drill shape = CIRCLE, drill diam = m_Drill.x
wxSize m_Offset; // Offset de la forme (pastilles excentrees)
wxSize m_Size; // Dimensions X et Y ( si orient 0 x = axe X
// y = axe Y
wxSize m_DeltaSize; // delta sur formes rectangle -> trapezes
wxPoint m_Pos0; // Coord relatives a l'ancre du pad en orientation 0
int m_Rayon; // rayon du cercle exinscrit du pad
int m_Attribut; // NORMAL, SMD, CONN, Bit 7 = STACK
int m_Orient ; // en 1/10 degres
union
{
unsigned long m_NumPadName;
char m_Padname[4]; /* nom (numero) de la pastille (assimilable a un long)*/
};
wxString m_Netname; /* Net Name */
int m_Masque_Layer; // (Bit a Bit :1= cuivre, 15= cmp,
// 2..14 = interne
// 16 .. 31 = couches non cuivre
int m_PadShape; // forme CERCLE, RECT, OVALE, TRAPEZE ou libre
int m_DrillShape; // forme CERCLE, OVAL
wxPoint m_Pos; // Position de reference du pad
wxSize m_Drill; // Drill diam (drill shape = CIRCLE) or drill size(shape = OVAL)
// for drill shape = CIRCLE, drill diam = m_Drill.x
wxSize m_Offset; // Offset de la forme (pastilles excentrees)
wxSize m_Size; // Dimensions X et Y ( si orient 0 x = axe X
// y = axe Y
wxSize m_DeltaSize; // delta sur formes rectangle -> trapezes
wxPoint m_Pos0; // Coord relatives a l'ancre du pad en orientation 0
int m_Rayon; // rayon du cercle exinscrit du pad
int m_Attribut; // NORMAL, SMD, CONN, Bit 7 = STACK
int m_Orient; // en 1/10 degres
int m_NetCode; /* Numero de net pour comparaisons rapides */
int m_logical_connexion; // variable utilisee lors du calcul du chevelu:
// contient de numero de block pour une connexion type ratsnet
int m_physical_connexion; // variable utilisee lors du calcul de la connexité:
// contient de numero de block pour une connexion type piste
int m_NetCode; /* Numero de net pour comparaisons rapides */
int m_logical_connexion; // variable utilisee lors du calcul du chevelu:
// contient de numero de block pour une connexion type ratsnet
int m_physical_connexion; // variable utilisee lors du calcul de la connexit�
// contient de numero de block pour une connexion type piste
public:
D_PAD(MODULE * parent);
D_PAD(D_PAD * pad);
~D_PAD(void);
D_PAD( MODULE* parent );
D_PAD( D_PAD* pad );
~D_PAD( void );
void Copy(D_PAD * source);
D_PAD * Next(void)
{ return (D_PAD *) Pnext; }
void Copy( D_PAD* source );
/* supprime du chainage la structure Struct */
void UnLink( void );
D_PAD* Next( void ) { return (D_PAD*) Pnext; }
/* Readind and writing data on files */
int ReadDescr( FILE * File, int * LineNum = NULL);
int WriteDescr( FILE * File );
/* supprime du chainage la structure Struct */
void UnLink( void );
/* drawing functions */
void Draw(WinEDA_DrawPanel * panel, wxDC * DC, const wxPoint & offset, int draw_mode);
void Draw3D(Pcb3D_GLCanvas * glcanvas);
/* Readind and writing data on files */
int ReadDescr( FILE* File, int* LineNum = NULL );
int WriteDescr( FILE* File );
// autres
void SetPadName(const wxString & name); // Change pade name
wxString ReturnStringPadName(void); // Return pad name as string in a wxString
void ReturnStringPadName(wxString & text); // Return pad name as string in a buffer
void ComputeRayon(void); // met a jour m_Rayon, rayon du cercle exinscrit
const wxPoint ReturnShapePos(void); // retourne la position
// de la forme (pastilles excentrees)
void Display_Infos(WinEDA_BasePcbFrame * frame);
/* drawing functions */
void Draw( WinEDA_DrawPanel* panel, wxDC* DC, const wxPoint& offset, int draw_mode );
void Draw3D( Pcb3D_GLCanvas* glcanvas );
// autres
void SetPadName( const wxString& name ); // Change pade name
wxString ReturnStringPadName( void ); // Return pad name as string in a wxString
void ReturnStringPadName( wxString& text ); // Return pad name as string in a buffer
void ComputeRayon( void ); // met a jour m_Rayon, rayon du cercle exinscrit
const wxPoint ReturnShapePos( void ); // retourne la position
// de la forme (pastilles excentrees)
void Display_Infos( WinEDA_BasePcbFrame* frame );
};
typedef class D_PAD * LISTE_PAD;
......@@ -294,3 +294,23 @@ int TEXTE_MODULE::GetDrawRotation( void )
return rotation;
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void TEXTE_MODULE::Show( int nestLevel, std::ostream& os )
{
// for now, make it look like XML, expand on this later.
NestedSpace( nestLevel, os ) << '<' << ReturnClassName().mb_str() << ">\n";
NestedSpace( nestLevel+1, os ) << m_Text.mb_str() << '\n';
NestedSpace( nestLevel, os ) << "</" << ReturnClassName().mb_str() << ">\n";
}
#endif
......@@ -58,4 +58,16 @@ public:
* @return bool - true if a hit, else false
*/
bool HitTest( const wxPoint& posref );
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
virtual void Show( int nestLevel, std::ostream& os );
#endif
};
......@@ -935,6 +935,7 @@ TRACK* Locate_Piste_Connectee( TRACK* PtRefSegm, TRACK* pt_base,
{
if( (PtSegmN == NULL) && (PtSegmB == NULL) )
break;
if( PtSegmN )
{
if( PtSegmN->GetState( BUSY | DELETED ) )
......@@ -1054,6 +1055,7 @@ TRACK* Locate_Pistes( TRACK* start_adresse, const wxPoint& ref_pos, int MasqueLa
continue;
if( (g_DesignSettings.m_LayerColor[Track->m_Layer] & ITEM_NOT_SHOW) )
continue;
/* calcul des coordonnees du segment teste */
l_piste = Track->m_Width >> 1; /* l_piste = demi largeur piste */
ux0 = Track->m_Start.x; uy0 = Track->m_Start.y; /* coord de depart */
......@@ -1074,7 +1076,8 @@ TRACK* Locate_Pistes( TRACK* start_adresse, const wxPoint& ref_pos, int MasqueLa
if( MasqueLayer != -1 )
if( (g_TabOneLayerMask[Track->m_Layer] & MasqueLayer) == 0 )
continue;/* Segments sur couches differentes */
continue; /* Segments sur couches differentes */
if( distance( l_piste ) )
return Track;
}
......@@ -1100,7 +1103,6 @@ TRACK* Locate_Pistes( TRACK* start_adresse, const wxPoint& ref_pos, int MasqueLa
*
* La recherche commence a l'adresse start_adresse
*/
TRACK* Locate_Zone( TRACK* start_adresse, int layer, int typeloc )
{
wxPoint ref_pos = RefPos( typeloc );
......@@ -1287,6 +1289,7 @@ int distance( int seuil )
angle = (int) ( atan2( (float) segY, (float) segX ) * 1800 / M_PI);
cXrot = pointX; cYrot = pointY;
RotatePoint( &cXrot, &cYrot, angle ); /* Rotation du point a tester */
RotatePoint( &segX, &segY, angle ); /* Rotation du segment */
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment