Commit 1f277fd6 authored by jean-pierre charras's avatar jean-pierre charras

Remove Kbool from Kicad. Use Clipper instead.

parent 7fd24c7f
...@@ -170,13 +170,9 @@ GLuint EDA_3D_CANVAS::CreateDrawGL_List() ...@@ -170,13 +170,9 @@ GLuint EDA_3D_CANVAS::CreateDrawGL_List()
if( g_Parm_3D_Visu.m_Layers < 2 ) if( g_Parm_3D_Visu.m_Layers < 2 )
g_Parm_3D_Visu.m_Layers = 2; g_Parm_3D_Visu.m_Layers = 2;
g_Parm_3D_Visu.m_BoardScale = 2.0 / max( g_Parm_3D_Visu.m_BoardSize.x, g_Parm_3D_Visu.m_BoardScale = 2.0 / std::max( g_Parm_3D_Visu.m_BoardSize.x,
g_Parm_3D_Visu.m_BoardSize.y ); g_Parm_3D_Visu.m_BoardSize.y );
// @TODO: epoxy_width (board thickness) must be set by user,
// because all boards thickness no not match with this setup:
// double epoxy_width = 1.6; // epoxy width in mm
g_Parm_3D_Visu.m_Epoxy_Width = pcb->GetDesignSettings().GetBoardThickness() g_Parm_3D_Visu.m_Epoxy_Width = pcb->GetDesignSettings().GetBoardThickness()
* g_Parm_3D_Visu.m_BoardScale; * g_Parm_3D_Visu.m_BoardScale;
......
...@@ -46,7 +46,7 @@ endif(APPLE) ...@@ -46,7 +46,7 @@ endif(APPLE)
target_link_libraries( bitmap2component common polygon bitmaps target_link_libraries( bitmap2component common polygon bitmaps
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
potrace potrace
kbool ) )
install(TARGETS bitmap2component install(TARGETS bitmap2component
DESTINATION ${KICAD_BIN} DESTINATION ${KICAD_BIN}
......
...@@ -70,7 +70,7 @@ bool FOOTPRINT_LIST::ReadFootprintFiles( wxArrayString& aFootprintsLibNames ) ...@@ -70,7 +70,7 @@ bool FOOTPRINT_LIST::ReadFootprintFiles( wxArrayString& aFootprintsLibNames )
for( unsigned i=0; i<fpnames.GetCount(); ++i ) for( unsigned i=0; i<fpnames.GetCount(); ++i )
{ {
auto_ptr<MODULE> m( pi->FootprintLoad( libPath, fpnames[i] ) ); std::auto_ptr<MODULE> m( pi->FootprintLoad( libPath, fpnames[i] ) );
// we're loading what we enumerated, all must be there. // we're loading what we enumerated, all must be there.
wxASSERT( m.get() ); wxASSERT( m.get() );
......
...@@ -98,7 +98,6 @@ target_link_libraries(cvpcb ...@@ -98,7 +98,6 @@ target_link_libraries(cvpcb
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
${OPENGL_LIBRARIES} ${OPENGL_LIBRARIES}
${GDI_PLUS_LIBRARIES} ${GDI_PLUS_LIBRARIES}
......
...@@ -217,7 +217,6 @@ target_link_libraries(eeschema ...@@ -217,7 +217,6 @@ target_link_libraries(eeschema
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
${GDI_PLUS_LIBRARIES} ${GDI_PLUS_LIBRARIES}
) )
......
...@@ -121,7 +121,7 @@ endif(APPLE) ...@@ -121,7 +121,7 @@ endif(APPLE)
### ###
# Link executable target gerbview with correct libraries # Link executable target gerbview with correct libraries
### ###
target_link_libraries(gerbview common polygon bitmaps kbool target_link_libraries(gerbview common polygon bitmaps
${OPENGL_LIBRARIES} ${OPENGL_LIBRARIES}
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
${GDI_PLUS_LIBRARIES}) ${GDI_PLUS_LIBRARIES})
......
...@@ -51,7 +51,6 @@ if(APPLE) ...@@ -51,7 +51,6 @@ if(APPLE)
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
) )
else(APPLE) else(APPLE)
...@@ -59,7 +58,6 @@ else(APPLE) ...@@ -59,7 +58,6 @@ else(APPLE)
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
${GDI_PLUS_LIBRARIES} ${GDI_PLUS_LIBRARIES}
) )
......
...@@ -82,7 +82,6 @@ target_link_libraries( pcb_calculator ...@@ -82,7 +82,6 @@ target_link_libraries( pcb_calculator
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
) )
......
...@@ -325,7 +325,6 @@ if (KICAD_SCRIPTING_MODULES) ...@@ -325,7 +325,6 @@ if (KICAD_SCRIPTING_MODULES)
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
${OPENGL_LIBRARIES} ${OPENGL_LIBRARIES}
${GDI_PLUS_LIBRARIES} ${GDI_PLUS_LIBRARIES}
...@@ -418,7 +417,6 @@ target_link_libraries(pcbnew ...@@ -418,7 +417,6 @@ target_link_libraries(pcbnew
common common
bitmaps bitmaps
polygon polygon
kbool
${wxWidgets_LIBRARIES} ${wxWidgets_LIBRARIES}
${OPENGL_LIBRARIES} ${OPENGL_LIBRARIES}
${GDI_PLUS_LIBRARIES} ${GDI_PLUS_LIBRARIES}
......
...@@ -186,7 +186,7 @@ void DIALOG_GENDRILL::InitDisplayParams() ...@@ -186,7 +186,7 @@ void DIALOG_GENDRILL::InitDisplayParams()
} }
else else
{ {
if( min( pad->GetDrillSize().x, pad->GetDrillSize().y ) != 0 ) if( std::min( pad->GetDrillSize().x, pad->GetDrillSize().y ) != 0 )
{ {
if( pad->GetAttribute() == PAD_HOLE_NOT_PLATED ) if( pad->GetAttribute() == PAD_HOLE_NOT_PLATED )
m_notplatedPadsHoleCount++; m_notplatedPadsHoleCount++;
......
...@@ -76,6 +76,7 @@ Load() TODO's ...@@ -76,6 +76,7 @@ Load() TODO's
#include <class_pcb_text.h> #include <class_pcb_text.h>
using namespace boost::property_tree; using namespace boost::property_tree;
using namespace std;
typedef EAGLE_PLUGIN::BIU BIU; typedef EAGLE_PLUGIN::BIU BIU;
typedef PTREE::const_assoc_iterator CA_ITER; typedef PTREE::const_assoc_iterator CA_ITER;
......
...@@ -63,7 +63,7 @@ static bool s_AddCutoutToCurrentZone; // if true, the next outline ...@@ -63,7 +63,7 @@ static bool s_AddCutoutToCurrentZone; // if true, the next outline
static ZONE_CONTAINER* s_CurrentZone; // if != NULL, these ZONE_CONTAINER params will be used for the next zone static ZONE_CONTAINER* s_CurrentZone; // if != NULL, these ZONE_CONTAINER params will be used for the next zone
static wxPoint s_CursorLastPosition; // in move zone outline, last cursor position. Used to calculate the move vector static wxPoint s_CursorLastPosition; // in move zone outline, last cursor position. Used to calculate the move vector
static PICKED_ITEMS_LIST s_PickedList; // a picked list to save zones for undo/redo command static PICKED_ITEMS_LIST s_PickedList; // a picked list to save zones for undo/redo command
static PICKED_ITEMS_LIST _AuxiliaryList; // a picked list to store zones that are deleted or added when combined static PICKED_ITEMS_LIST s_AuxiliaryList; // a picked list to store zones that are deleted or added when combined
void PCB_EDIT_FRAME::Add_Similar_Zone( wxDC* DC, ZONE_CONTAINER* aZone ) void PCB_EDIT_FRAME::Add_Similar_Zone( wxDC* DC, ZONE_CONTAINER* aZone )
...@@ -128,7 +128,7 @@ void PCB_EDIT_FRAME::duplicateZone( wxDC* aDC, ZONE_CONTAINER* aZone ) ...@@ -128,7 +128,7 @@ void PCB_EDIT_FRAME::duplicateZone( wxDC* aDC, ZONE_CONTAINER* aZone )
zoneSettings.ExportSetting( *newZone ); zoneSettings.ExportSetting( *newZone );
newZone->m_Poly->Hatch(); newZone->m_Poly->Hatch();
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
SaveCopyOfZones( s_PickedList, GetBoard(), newZone->GetNet(), newZone->GetLayer() ); SaveCopyOfZones( s_PickedList, GetBoard(), newZone->GetNet(), newZone->GetLayer() );
GetBoard()->Add( newZone ); GetBoard()->Add( newZone );
...@@ -139,7 +139,7 @@ void PCB_EDIT_FRAME::duplicateZone( wxDC* aDC, ZONE_CONTAINER* aZone ) ...@@ -139,7 +139,7 @@ void PCB_EDIT_FRAME::duplicateZone( wxDC* aDC, ZONE_CONTAINER* aZone )
GetScreen()->SetCurItem( NULL ); // This outline may be deleted when merging outlines GetScreen()->SetCurItem( NULL ); // This outline may be deleted when merging outlines
// Combine zones if possible // Combine zones if possible
GetBoard()->OnAreaPolygonModified( &_AuxiliaryList, newZone ); GetBoard()->OnAreaPolygonModified( &s_AuxiliaryList, newZone );
// Redraw zones // Redraw zones
GetBoard()->RedrawAreasOutlines( m_canvas, aDC, GR_OR, newZone->GetLayer() ); GetBoard()->RedrawAreasOutlines( m_canvas, aDC, GR_OR, newZone->GetLayer() );
...@@ -151,7 +151,7 @@ void PCB_EDIT_FRAME::duplicateZone( wxDC* aDC, ZONE_CONTAINER* aZone ) ...@@ -151,7 +151,7 @@ void PCB_EDIT_FRAME::duplicateZone( wxDC* aDC, ZONE_CONTAINER* aZone )
DisplayError( this, _( "Duplicate Zone: The outline of the duplicated zone fails DRC check!" ) ); DisplayError( this, _( "Duplicate Zone: The outline of the duplicated zone fails DRC check!" ) );
} }
UpdateCopyOfZonesList( s_PickedList, _AuxiliaryList, GetBoard() ); UpdateCopyOfZonesList( s_PickedList, s_AuxiliaryList, GetBoard() );
SaveCopyInUndoList( s_PickedList, UR_UNSPECIFIED ); SaveCopyInUndoList( s_PickedList, UR_UNSPECIFIED );
s_PickedList.ClearItemsList(); s_PickedList.ClearItemsList();
...@@ -245,7 +245,7 @@ void PCB_EDIT_FRAME::Start_Move_Zone_Corner( wxDC* DC, ZONE_CONTAINER* aZone, ...@@ -245,7 +245,7 @@ void PCB_EDIT_FRAME::Start_Move_Zone_Corner( wxDC* DC, ZONE_CONTAINER* aZone,
if ( IsNewCorner ) if ( IsNewCorner )
aZone->m_Poly->DeleteCorner( corner_id ); aZone->m_Poly->DeleteCorner( corner_id );
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(), SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(),
...@@ -277,7 +277,7 @@ void PCB_EDIT_FRAME::Start_Move_Zone_Drag_Outline_Edge( wxDC* DC, ...@@ -277,7 +277,7 @@ void PCB_EDIT_FRAME::Start_Move_Zone_Drag_Outline_Edge( wxDC* DC,
s_CurrentZone = NULL; s_CurrentZone = NULL;
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(), SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(),
aZone->GetLayer() ); aZone->GetLayer() );
} }
...@@ -302,7 +302,7 @@ void PCB_EDIT_FRAME::Start_Move_Zone_Outlines( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -302,7 +302,7 @@ void PCB_EDIT_FRAME::Start_Move_Zone_Outlines( wxDC* DC, ZONE_CONTAINER* aZone )
} }
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(), SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(),
aZone->GetLayer() ); aZone->GetLayer() );
...@@ -332,7 +332,7 @@ void PCB_EDIT_FRAME::End_Move_Zone_Corner_Or_Outlines( wxDC* DC, ZONE_CONTAINER* ...@@ -332,7 +332,7 @@ void PCB_EDIT_FRAME::End_Move_Zone_Corner_Or_Outlines( wxDC* DC, ZONE_CONTAINER*
// Combine zones if possible // Combine zones if possible
wxBusyCursor dummy; wxBusyCursor dummy;
GetBoard()->OnAreaPolygonModified( &_AuxiliaryList, aZone ); GetBoard()->OnAreaPolygonModified( &s_AuxiliaryList, aZone );
m_canvas->Refresh(); m_canvas->Refresh();
...@@ -341,7 +341,7 @@ void PCB_EDIT_FRAME::End_Move_Zone_Corner_Or_Outlines( wxDC* DC, ZONE_CONTAINER* ...@@ -341,7 +341,7 @@ void PCB_EDIT_FRAME::End_Move_Zone_Corner_Or_Outlines( wxDC* DC, ZONE_CONTAINER*
if( ii < 0 ) if( ii < 0 )
aZone = NULL; // was removed by combining zones aZone = NULL; // was removed by combining zones
UpdateCopyOfZonesList( s_PickedList, _AuxiliaryList, GetBoard() ); UpdateCopyOfZonesList( s_PickedList, s_AuxiliaryList, GetBoard() );
SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED); SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED);
s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items
...@@ -380,14 +380,14 @@ void PCB_EDIT_FRAME::Remove_Zone_Corner( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -380,14 +380,14 @@ void PCB_EDIT_FRAME::Remove_Zone_Corner( wxDC* DC, ZONE_CONTAINER* aZone )
GetBoard()->RedrawFilledAreas( m_canvas, DC, GR_XOR, layer ); GetBoard()->RedrawFilledAreas( m_canvas, DC, GR_XOR, layer );
} }
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList. ClearListAndDeleteItems(); s_PickedList. ClearListAndDeleteItems();
SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(), SaveCopyOfZones( s_PickedList, GetBoard(), aZone->GetNet(),
aZone->GetLayer() ); aZone->GetLayer() );
aZone->m_Poly->DeleteCorner( aZone->m_CornerSelection ); aZone->m_Poly->DeleteCorner( aZone->m_CornerSelection );
// modify zones outlines according to the new aZone shape // modify zones outlines according to the new aZone shape
GetBoard()->OnAreaPolygonModified( &_AuxiliaryList, aZone ); GetBoard()->OnAreaPolygonModified( &s_AuxiliaryList, aZone );
if( DC ) if( DC )
{ {
...@@ -395,7 +395,7 @@ void PCB_EDIT_FRAME::Remove_Zone_Corner( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -395,7 +395,7 @@ void PCB_EDIT_FRAME::Remove_Zone_Corner( wxDC* DC, ZONE_CONTAINER* aZone )
GetBoard()->RedrawFilledAreas( m_canvas, DC, GR_OR, layer ); GetBoard()->RedrawFilledAreas( m_canvas, DC, GR_OR, layer );
} }
UpdateCopyOfZonesList( s_PickedList, _AuxiliaryList, GetBoard() ); UpdateCopyOfZonesList( s_PickedList, s_AuxiliaryList, GetBoard() );
SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED); SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED);
s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items
...@@ -448,7 +448,7 @@ void Abort_Zone_Move_Corner_Or_Outlines( EDA_DRAW_PANEL* Panel, wxDC* DC ) ...@@ -448,7 +448,7 @@ void Abort_Zone_Move_Corner_Or_Outlines( EDA_DRAW_PANEL* Panel, wxDC* DC )
} }
Panel->SetMouseCapture( NULL, NULL ); Panel->SetMouseCapture( NULL, NULL );
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList. ClearListAndDeleteItems(); s_PickedList. ClearListAndDeleteItems();
Panel->Refresh(); Panel->Refresh();
...@@ -733,7 +733,7 @@ bool PCB_EDIT_FRAME::End_Zone( wxDC* DC ) ...@@ -733,7 +733,7 @@ bool PCB_EDIT_FRAME::End_Zone( wxDC* DC )
GetBoard()->RedrawFilledAreas( m_canvas, DC, GR_XOR, layer ); GetBoard()->RedrawFilledAreas( m_canvas, DC, GR_XOR, layer );
// Save initial zones configuration, for undo/redo, before adding new zone // Save initial zones configuration, for undo/redo, before adding new zone
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
SaveCopyOfZones(s_PickedList, GetBoard(), zone->GetNet(), zone->GetLayer() ); SaveCopyOfZones(s_PickedList, GetBoard(), zone->GetNet(), zone->GetLayer() );
...@@ -766,7 +766,7 @@ bool PCB_EDIT_FRAME::End_Zone( wxDC* DC ) ...@@ -766,7 +766,7 @@ bool PCB_EDIT_FRAME::End_Zone( wxDC* DC )
GetScreen()->SetCurItem( NULL ); // This outline can be deleted when merging outlines GetScreen()->SetCurItem( NULL ); // This outline can be deleted when merging outlines
// Combine zones if possible : // Combine zones if possible :
GetBoard()->OnAreaPolygonModified( &_AuxiliaryList, zone ); GetBoard()->OnAreaPolygonModified( &s_AuxiliaryList, zone );
// Redraw the real edge zone : // Redraw the real edge zone :
GetBoard()->RedrawAreasOutlines( m_canvas, DC, GR_OR, layer ); GetBoard()->RedrawAreasOutlines( m_canvas, DC, GR_OR, layer );
...@@ -784,7 +784,7 @@ bool PCB_EDIT_FRAME::End_Zone( wxDC* DC ) ...@@ -784,7 +784,7 @@ bool PCB_EDIT_FRAME::End_Zone( wxDC* DC )
DisplayError( this, _( "Area: DRC outline error" ) ); DisplayError( this, _( "Area: DRC outline error" ) );
} }
UpdateCopyOfZonesList( s_PickedList, _AuxiliaryList, GetBoard() ); UpdateCopyOfZonesList( s_PickedList, s_AuxiliaryList, GetBoard() );
SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED); SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED);
s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items
...@@ -838,7 +838,7 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -838,7 +838,7 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone )
// Save initial zones configuration, for undo/redo, before adding new zone // Save initial zones configuration, for undo/redo, before adding new zone
// note the net name and the layer can be changed, so we must save all zones // note the net name and the layer can be changed, so we must save all zones
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
SaveCopyOfZones(s_PickedList, GetBoard(), -1, -1 ); SaveCopyOfZones(s_PickedList, GetBoard(), -1, -1 );
...@@ -866,7 +866,7 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -866,7 +866,7 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone )
if( edited == ZONE_ABORT ) if( edited == ZONE_ABORT )
{ {
_AuxiliaryList.ClearListAndDeleteItems(); s_AuxiliaryList.ClearListAndDeleteItems();
s_PickedList.ClearListAndDeleteItems(); s_PickedList.ClearListAndDeleteItems();
return; return;
} }
...@@ -875,7 +875,7 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -875,7 +875,7 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone )
if( edited == ZONE_EXPORT_VALUES ) if( edited == ZONE_EXPORT_VALUES )
{ {
UpdateCopyOfZonesList( s_PickedList, _AuxiliaryList, GetBoard() ); UpdateCopyOfZonesList( s_PickedList, s_AuxiliaryList, GetBoard() );
SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED); SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED);
s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items s_PickedList.ClearItemsList(); // s_ItemsListPicker is no more owner of picked items
return; return;
...@@ -896,12 +896,12 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone ) ...@@ -896,12 +896,12 @@ void PCB_EDIT_FRAME::Edit_Zone_Params( wxDC* DC, ZONE_CONTAINER* aZone )
aZone->SetNetName( net->GetNetname() ); aZone->SetNetName( net->GetNetname() );
// Combine zones if possible // Combine zones if possible
GetBoard()->OnAreaPolygonModified( &_AuxiliaryList, aZone ); GetBoard()->OnAreaPolygonModified( &s_AuxiliaryList, aZone );
// Redraw the real new zone outlines // Redraw the real new zone outlines
GetBoard()->RedrawAreasOutlines( m_canvas, DC, GR_OR, -1 ); GetBoard()->RedrawAreasOutlines( m_canvas, DC, GR_OR, -1 );
UpdateCopyOfZonesList( s_PickedList, _AuxiliaryList, GetBoard() ); UpdateCopyOfZonesList( s_PickedList, s_AuxiliaryList, GetBoard() );
SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED); SaveCopyInUndoList(s_PickedList, UR_UNSPECIFIED);
s_PickedList.ClearItemsList(); // s_ItemsListPicker is no longer owner of picked items s_PickedList.ClearItemsList(); // s_ItemsListPicker is no longer owner of picked items
......
...@@ -174,19 +174,26 @@ int SaveCopyOfZones( PICKED_ITEMS_LIST& aPickList, BOARD* aPcb, int aNetCode, in ...@@ -174,19 +174,26 @@ int SaveCopyOfZones( PICKED_ITEMS_LIST& aPickList, BOARD* aPcb, int aNetCode, in
* @param aPcb = the Board * @param aPcb = the Board
* *
* aAuxiliaryList is a list of pickers updated by zone algorithms: * aAuxiliaryList is a list of pickers updated by zone algorithms:
* This list cointains zones which were added or deleted during the zones combine process * This list contains zones which were added or deleted during the zones combine process
* aPickList :is a list of zones that can be modified (changed or deleted, or not modified) * aPickList :is a list of zones that can be modified (changed or deleted, or not modified)
* Typically, this is the list of existing zones on the layer of the edited zone,
* before any change.
* >> if the picked zone is not changed, it is removed from list * >> if the picked zone is not changed, it is removed from list
* >> if the picked zone was deleted (i.e. not found in boad list), the picker is modified: * >> if the picked zone was deleted (i.e. not found in board list), the picker is modified:
* - its status becomes UR_DELETED * its status becomes UR_DELETED
* - the aAuxiliaryList corresponding picker is removed (if not found : set an error) * the aAuxiliaryList corresponding picker is removed (if not found : set an error)
* >> if the picked zone was flagged as UR_NEW, and was deleted (i.e. not found in boad list), * >> if the picked zone was flagged as UR_NEW, and was after deleted ,
* - the picker is removed * perhaps combined with an other zone (i.e. not found in board list):
* - the zone itself if really deleted * the picker is removed
* - the aAuxiliaryList corresponding picker is removed (if not found : set an error) * the zone itself if really deleted
* the aAuxiliaryList corresponding picker is removed (if not found : set an error)
* After aPickList is cleaned, the aAuxiliaryList is read * After aPickList is cleaned, the aAuxiliaryList is read
* All pickers flagged UR_NEW are moved to aPickList * All pickers flagged UR_NEW are moved to aPickList
* (the corresponding zones are zone that were created by the zone combine process, mainly when adding cutaout areas) * (the corresponding zones are zone that were created by the zone normalize and combine process,
* mainly when adding cutout areas, or creating self intersecting contours)
* All pickers flagged UR_DELETED are removed, and the coresponding zones actually deleted
* (the corresponding zones are new zone that were created by the zone normalize process,
* when creating self intersecting contours, and after combined with an existing zone.
* At the end of the update process the aAuxiliaryList must be void, * At the end of the update process the aAuxiliaryList must be void,
* because all pickers created by the combine process * because all pickers created by the combine process
* must have been removed (removed for new and deleted zones, or moved in aPickList.) * must have been removed (removed for new and deleted zones, or moved in aPickList.)
...@@ -274,15 +281,21 @@ void UpdateCopyOfZonesList( PICKED_ITEMS_LIST& aPickList, ...@@ -274,15 +281,21 @@ void UpdateCopyOfZonesList( PICKED_ITEMS_LIST& aPickList,
// Add new zones in main pick list, and remove pickers from Auxiliary List // Add new zones in main pick list, and remove pickers from Auxiliary List
for( unsigned ii = 0; ii < aAuxiliaryList.GetCount(); ii++ ) for( unsigned ii = 0; ii < aAuxiliaryList.GetCount(); )
{ {
if( aAuxiliaryList.GetPickedItemStatus( ii ) == UR_NEW ) if( aAuxiliaryList.GetPickedItemStatus( ii ) == UR_NEW )
{ {
ITEM_PICKER picker = aAuxiliaryList.GetItemWrapper( ii ); ITEM_PICKER picker = aAuxiliaryList.GetItemWrapper( ii );
aPickList.PushItem( picker ); aPickList.PushItem( picker );
aAuxiliaryList.RemovePicker( ii ); aAuxiliaryList.RemovePicker( ii );
ii--;
} }
else if( aAuxiliaryList.GetPickedItemStatus( ii ) == UR_DELETED )
{
delete aAuxiliaryList.GetPickedItemLink( ii );
aAuxiliaryList.RemovePicker( ii );
}
else
ii++;
} }
// Should not occur: // Should not occur:
......
...@@ -211,12 +211,12 @@ bool BOARD::OnAreaPolygonModified( PICKED_ITEMS_LIST* aModifiedZonesList, ...@@ -211,12 +211,12 @@ bool BOARD::OnAreaPolygonModified( PICKED_ITEMS_LIST* aModifiedZonesList,
// Test for bad areas: all zones must have more than 2 corners: // Test for bad areas: all zones must have more than 2 corners:
// Note: should not happen, but just in case. // Note: should not happen, but just in case.
for( unsigned ia1 = 0; ia1 < m_ZoneDescriptorList.size() - 1; ) for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); )
{ {
ZONE_CONTAINER* zone = m_ZoneDescriptorList[ia1]; ZONE_CONTAINER* zone = m_ZoneDescriptorList[ii];
if( zone->GetNumCorners() >= 3 ) if( zone->GetNumCorners() >= 3 )
ia1++; ii++;
else // Remove zone because it is incorrect: else // Remove zone because it is incorrect:
RemoveArea( aModifiedZonesList, zone ); RemoveArea( aModifiedZonesList, zone );
} }
...@@ -267,8 +267,9 @@ bool BOARD::CombineAllAreasInNet( PICKED_ITEMS_LIST* aDeletedList, int aNetCode, ...@@ -267,8 +267,9 @@ bool BOARD::CombineAllAreasInNet( PICKED_ITEMS_LIST* aDeletedList, int aNetCode,
if( curr_area->GetIsKeepout() != area2->GetIsKeepout() ) if( curr_area->GetIsKeepout() != area2->GetIsKeepout() )
continue; continue;
if( curr_area->GetLayer() == area2->GetLayer() ) if( curr_area->GetLayer() != area2->GetLayer() )
{ continue;
CRect b2 = area2->m_Poly->GetCornerBounds(); CRect b2 = area2->m_Poly->GetCornerBounds();
if( !( b1.left > b2.right || b1.right < b2.left if( !( b1.left > b2.right || b1.right < b2.left
|| b1.bottom > b2.top || b1.top < b2.bottom ) ) || b1.bottom > b2.top || b1.top < b2.bottom ) )
...@@ -289,7 +290,6 @@ bool BOARD::CombineAllAreasInNet( PICKED_ITEMS_LIST* aDeletedList, int aNetCode, ...@@ -289,7 +290,6 @@ bool BOARD::CombineAllAreasInNet( PICKED_ITEMS_LIST* aDeletedList, int aNetCode,
} }
} }
} }
}
if( mod_ia1 ) if( mod_ia1 )
ia1--; // if modified, we need to check it again ia1--; // if modified, we need to check it again
...@@ -424,7 +424,7 @@ bool BOARD::TestAreaIntersection( ZONE_CONTAINER* area_ref, ZONE_CONTAINER* area ...@@ -424,7 +424,7 @@ bool BOARD::TestAreaIntersection( ZONE_CONTAINER* area_ref, ZONE_CONTAINER* area
if( poly1->TestPointInside( x, y ) ) if( poly1->TestPointInside( x, y ) )
{ {
return 1; return true;
} }
} }
...@@ -435,11 +435,11 @@ bool BOARD::TestAreaIntersection( ZONE_CONTAINER* area_ref, ZONE_CONTAINER* area ...@@ -435,11 +435,11 @@ bool BOARD::TestAreaIntersection( ZONE_CONTAINER* area_ref, ZONE_CONTAINER* area
if( poly2->TestPointInside( x, y ) ) if( poly2->TestPointInside( x, y ) )
{ {
return 1; return true;
} }
} }
return 0; return false;
} }
...@@ -465,10 +465,6 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_ ...@@ -465,10 +465,6 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_
} }
// polygons intersect, combine them // polygons intersect, combine them
// TODO: test here if areas intersect and combine only if so
#if 0
// do not set to 1 (not fully working): only for me (JP. Charras) until this code is finished
KI_POLYGON_WITH_HOLES areaRefPoly; KI_POLYGON_WITH_HOLES areaRefPoly;
KI_POLYGON_WITH_HOLES areaToMergePoly; KI_POLYGON_WITH_HOLES areaToMergePoly;
CopyPolysListToKiPolygonWithHole( area_ref->m_Poly->m_CornersList, areaRefPoly ); CopyPolysListToKiPolygonWithHole( area_ref->m_Poly->m_CornersList, areaRefPoly );
...@@ -478,10 +474,20 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_ ...@@ -478,10 +474,20 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_
mergedOutlines.push_back( areaRefPoly ); mergedOutlines.push_back( areaRefPoly );
mergedOutlines |= areaToMergePoly; mergedOutlines |= areaToMergePoly;
// We can have more than one polygon with holes in mergedOutlines // We should have one polygon with hole
// depending on the complexity of outlines // We can have 2 polygons with hole, if the 2 initial polygons have only one common corner
// and therefore cannot be merged (they are dectected as intersecting)
// but we should never have more than 2 polys
if( mergedOutlines.size() > 2 )
{
wxLogMessage(wxT("BOARD::CombineAreas error: more than 2 polys after merging") );
return false;
}
if( mergedOutlines.size() > 1 )
return false;
areaRefPoly = mergedOutlines[0]; // TODO: read and create all created polygons areaRefPoly = mergedOutlines[0];
area_ref->m_Poly->RemoveAllContours(); area_ref->m_Poly->RemoveAllContours();
KI_POLYGON_WITH_HOLES::iterator_type corner = areaRefPoly.begin(); KI_POLYGON_WITH_HOLES::iterator_type corner = areaRefPoly.begin();
...@@ -509,76 +515,6 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_ ...@@ -509,76 +515,6 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_
area_ref->m_Poly->CloseLastContour(); area_ref->m_Poly->CloseLastContour();
hole++; hole++;
} }
#else
void armBoolEng( Bool_Engine* aBooleng, bool aConvertHoles = false );
Bool_Engine* booleng = new Bool_Engine();
armBoolEng( booleng );
area_ref->m_Poly->AddPolygonsToBoolEng( booleng, GROUP_A );
area_to_combine->m_Poly->AddPolygonsToBoolEng(booleng, GROUP_B );
booleng->Do_Operation( BOOL_OR );
// create area with external contour: Recreate only area edges, NOT holes
if( booleng->StartPolygonGet() )
{
if( booleng->GetPolygonPointEdgeType() == KB_INSIDE_EDGE )
{
DisplayError( NULL, wxT( "BOARD::CombineAreas() error: unexpected hole descriptor" ) );
}
area_ref->m_Poly->RemoveAllContours();
// foreach point in the polygon
bool first = true;
while( booleng->PolygonHasMorePoints() )
{
int x = (int) booleng->GetPolygonXPoint();
int y = (int) booleng->GetPolygonYPoint();
if( first )
{
first = false;
area_ref->m_Poly->Start( area_ref->GetLayer(
), x, y, area_ref->m_Poly->GetHatchStyle() );
}
else
{
area_ref->m_Poly->AppendCorner( x, y );
}
}
booleng->EndPolygonGet();
area_ref->m_Poly->CloseLastContour();
}
// add holes
bool show_error = true;
while( booleng->StartPolygonGet() )
{
// we expect all vertex are holes inside the main outline
if( booleng->GetPolygonPointEdgeType() != KB_INSIDE_EDGE )
{
if( show_error ) // show this error only once, if happens
DisplayError( NULL,
wxT( "BOARD::CombineAreas() error: unexpected outside contour descriptor" ) );
show_error = false;
continue;
}
while( booleng->PolygonHasMorePoints() )
{
int x = (int) booleng->GetPolygonXPoint();
int y = (int) booleng->GetPolygonYPoint();
area_ref->m_Poly->AppendCorner( x, y );
}
area_ref->m_Poly->CloseLastContour();
booleng->EndPolygonGet();
}
#endif
RemoveArea( aDeletedList, area_to_combine ); RemoveArea( aDeletedList, area_to_combine );
...@@ -822,7 +758,7 @@ bool DRC::doEdgeZoneDrc( ZONE_CONTAINER* aArea, int aCornerIndex ) ...@@ -822,7 +758,7 @@ bool DRC::doEdgeZoneDrc( ZONE_CONTAINER* aArea, int aCornerIndex )
for( int ia2 = 0; ia2 < m_pcb->GetAreaCount(); ia2++ ) for( int ia2 = 0; ia2 < m_pcb->GetAreaCount(); ia2++ )
{ {
ZONE_CONTAINER* area_to_test = m_pcb->GetArea( ia2 ); ZONE_CONTAINER* area_to_test = m_pcb->GetArea( ia2 );
int zone_clearance = max( area_to_test->m_ZoneClearance, int zone_clearance = std::max( area_to_test->m_ZoneClearance,
aArea->m_ZoneClearance ); aArea->m_ZoneClearance );
// test for same layer // test for same layer
......
...@@ -8,6 +8,7 @@ set(POLYGON_SRCS ...@@ -8,6 +8,7 @@ set(POLYGON_SRCS
math_for_graphics.cpp math_for_graphics.cpp
PolyLine.cpp PolyLine.cpp
polygon_test_point_inside.cpp polygon_test_point_inside.cpp
clipper.cpp
) )
add_library(polygon STATIC ${POLYGON_SRCS}) add_library(polygon STATIC ${POLYGON_SRCS})
...@@ -16,16 +16,12 @@ ...@@ -16,16 +16,12 @@
#include <math_for_graphics.h> #include <math_for_graphics.h>
#include <polygon_test_point_inside.h> #include <polygon_test_point_inside.h>
enum m_SideStyle { STRAIGHT }; // side styles
CPolyLine::CPolyLine() CPolyLine::CPolyLine()
{ {
m_hatchStyle = NO_HATCH; m_hatchStyle = NO_HATCH;
m_hatchPitch = 0; m_hatchPitch = 0;
m_layer = 0; m_layer = 0;
m_utility = 0; m_utility = 0;
m_Kbool_Poly_Engine = NULL;
} }
...@@ -34,423 +30,127 @@ CPolyLine::CPolyLine() ...@@ -34,423 +30,127 @@ CPolyLine::CPolyLine()
CPolyLine::~CPolyLine() CPolyLine::~CPolyLine()
{ {
UnHatch(); UnHatch();
if( m_Kbool_Poly_Engine )
delete m_Kbool_Poly_Engine;
} }
/** /**
* Function armBoolEng * Function NormalizeAreaOutlines
* Initialise parameters used in kbool * Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s)
* @param aBooleng = pointer to the Bool_Engine to initialise * @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine
* @param aConvertHoles = mode for holes when a boolean operation is made * needed by the normalization
* true: holes are linked into outer contours by double overlapping segments * @return the polygon count (always >= 1, because there is at least one polygon)
* false: holes are not linked: in this mode contours are added clockwise * There are new polygons only if the polygon count is > 1
* and polygons added counter clockwise are holes (default)
*/
void armBoolEng( Bool_Engine* aBooleng, bool aConvertHoles = false );
/**
* Function NormalizeWithKbool
* Use the Kbool Library to clip contours: if outlines are crossing, the self-crossing polygon
* is converted to non self-crossing polygon by adding extra points at the crossing locations
* and reordering corners
* if more than one outside contour are found, extra CPolyLines will be created
* because copper areas have only one outside contour
* Therefore, if this results in new CPolyLines, return them as std::vector pa
* @param aExtraPolyList: pointer on a std::vector<CPolyLine*> to store extra CPolyLines
* (when after normalization, there is more than one polygon with holes)
* @return number of external contours, or -1 if error
*/ */
int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*>* aExtraPolyList ) #include "clipper.hpp"
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList )
{ {
std::vector <void*> hole_array; // list of holes ClipperLib::Polygon raw_polygon;
std::vector<int>* hole; // used to store corners for a given hole ClipperLib::Polygons normalized_polygons;
CPolyLine* polyline;
int n_ext_cont = 0; // CPolyLine count
/* Creates a bool engine from this CPolyLine.
* Normalized outlines and holes will be in m_Kbool_Poly_Engine
* If some polygons are self crossing, after running the Kbool Engine, self crossing polygons
* will be converted in non self crossing polygons by inserting extra points at the crossing locations
* True holes are combined if possible
*/
MakeKboolPoly();
UnHatch(); unsigned corners_count = m_CornersList.size();
/* now, recreate polys KI_POLYGON_SET polysholes;
* if more than one outside contour are found, extra CPolyLines will be created KI_POLYGON_WITH_HOLES mainpoly;
* because copper areas have only one outside contour std::vector<KI_POLY_POINT> cornerslist;
* the first outside contour found is the new "this" outside contour KI_POLYGON_WITH_HOLES_SET all_contours;
* if others outside contours are found we create new CPolyLines KI_POLYGON poly_tmp;
* Note: if there are holes in polygons, we must store them
* and when all outside contours are found, search the corresponding outside contour for each hole
*/
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
// See if the current polygon is flagged as a hole
if( m_Kbool_Poly_Engine->GetPolygonPointEdgeType() == KB_INSIDE_EDGE )
{
hole = new std::vector<int>;
hole_array.push_back( hole );
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // store hole // Normalize first contour
unsigned ic = 0;
while( ic < corners_count )
{ {
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint(); const CPolyPt& corner = m_CornersList[ic++];
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint(); raw_polygon.push_back( ClipperLib::IntPoint( corner.x, corner.y ) );
hole->push_back( x );
hole->push_back( y );
}
m_Kbool_Poly_Engine->EndPolygonGet(); if( corner.end_contour )
break;
} }
else if( n_ext_cont == 0 ) ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
{
// first external contour, replace this poly
m_CornersList.clear();
bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
// foreach point in the polygon
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first ) // enter main outline
for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
{ {
first = false; ClipperLib::Polygon& polygon = normalized_polygons[ii];
Start( GetLayer(), x, y, GetHatchStyle() ); cornerslist.clear();
} for( unsigned jj = 0; jj < polygon.size(); jj++ )
else cornerslist.push_back( KI_POLY_POINT( (int)polygon[jj].X, (int)polygon[jj].Y ) );
AppendCorner( x, y ); mainpoly.set( cornerslist.begin(), cornerslist.end() );
all_contours.push_back( mainpoly );
} }
m_Kbool_Poly_Engine->EndPolygonGet(); // Enter holes
CloseLastContour(); while( ic < corners_count )
n_ext_cont++;
}
else if( aExtraPolyList ) // a new outside contour is found: create a new CPolyLine
{
polyline = new CPolyLine;
polyline->ImportSettings( this );
aExtraPolyList->push_back( polyline ); // put it in array
bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // read next external contour
{ {
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint(); cornerslist.clear();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint(); raw_polygon.clear();
normalized_polygons.clear();
if( first ) // Normalize current hole and add it to hole list
while( ic < corners_count )
{ {
first = false; const CPolyPt& corner = m_CornersList[ic++];
polyline->Start( GetLayer(), x, y, GetHatchStyle() ); raw_polygon.push_back( ClipperLib::IntPoint( corner.x, corner.y ) );
}
else
polyline->AppendCorner( x, y );
}
m_Kbool_Poly_Engine->EndPolygonGet(); if( corner.end_contour )
polyline->CloseLastContour();
n_ext_cont++;
}
}
// now add cutouts to the corresponding CPolyLine(s)
for( unsigned ii = 0; ii < hole_array.size(); ii++ )
{ {
hole = (std::vector<int>*)hole_array[ii]; ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
polyline = NULL; for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
if( n_ext_cont == 1 )
{ {
polyline = this; ClipperLib::Polygon& polygon = normalized_polygons[ii];
cornerslist.clear();
for( unsigned jj = 0; jj < polygon.size(); jj++ )
cornerslist.push_back( KI_POLY_POINT( (int)polygon[jj].X, (int)polygon[jj].Y ) );
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
polysholes.push_back( poly_tmp );
} }
else
{
// find the polygon that contains this hole
// testing one corner inside is enought because a hole is entirely inside the polygon
// so we test only the first corner
int x = (*hole)[0];
int y = (*hole)[1];
if( TestPointInside( x, y ) )
polyline = this;
else if( aExtraPolyList )
{
for( int ext_ic = 0; ext_ic<n_ext_cont - 1; ext_ic++ )
{
if( (*aExtraPolyList)[ext_ic]->TestPointInside( x, y ) )
{
polyline = (*aExtraPolyList)[ext_ic];
break; break;
} }
} }
} }
} all_contours -= polysholes;
if( !polyline )
wxASSERT( 0 );
else
{
for( unsigned ii = 0; ii< (*hole).size(); ii++ )
{
int x = (*hole)[ii]; ii++;
int y = (*hole)[ii];
polyline->AppendCorner( x, y );
}
polyline->CloseLastContour();
}
}
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
// free hole list
for( unsigned ii = 0; ii < hole_array.size(); ii++ )
delete (std::vector<int>*)hole_array[ii];
return n_ext_cont;
}
/**
* Function AddPolygonsToBoolEng
* Add a CPolyLine to a kbool engine, preparing a boolean op between polygons
* @param aBooleng : pointer on a bool engine (handle a set of polygons)
* @param aGroup : group to fill (aGroup = GROUP_A or GROUP_B) operations are made between GROUP_A and GROUP_B
*/
int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng, GroupType aGroup )
{
int count = 0;
/* Convert the current polyline contour to a kbool polygon: */
MakeKboolPoly();
/* add the resulting kbool set of polygons to the current kcool engine */
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
if( aBooleng->StartPolygonAdd( GROUP_A ) )
{
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
aBooleng->AddPoint( x, y );
count++;
}
aBooleng->EndPolygonAdd();
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
return count;
}
/**
* Function MakeKboolPoly
* fill a kbool engine with a closed polyline contour
* normalize self-intersecting contours
* @return error: 0 if Ok, 1 if error
*/
int CPolyLine::MakeKboolPoly()
{
if( m_Kbool_Poly_Engine )
{
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
}
if( !GetClosed() )
return 1; // error
int polycount = GetContoursCount(); // copy polygon with holes to destination
int last_contour = polycount - 1; RemoveAllContours();
for( int icont = 0; icont <= last_contour; icont++ ) #define outlines all_contours
{
// Fill a kbool engine for this contour,
// and combine it with previous contours
Bool_Engine* booleng = new Bool_Engine();
armBoolEng( booleng, false );
if( m_Kbool_Poly_Engine ) // a previous contour exists. Put it in new engine for( unsigned ii = 0; ii < outlines.size(); ii++ )
{
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
if( booleng->StartPolygonAdd( GROUP_A ) )
{ {
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) CPolyLine* polyline = this;
{ if( ii > 0 )
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
booleng->AddPoint( x, y );
}
booleng->EndPolygonAdd();
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
}
int ic_st = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
if( !booleng->StartPolygonAdd( GROUP_B ) )
{ {
wxASSERT( 0 ); polyline = new CPolyLine;
return 1; // error polyline->ImportSettings( this );
aNewPolygonList->push_back( polyline );
} }
// Enter this contour to booleng KI_POLYGON_WITH_HOLES& curr_poly = outlines[ii];
for( int ic = ic_st; ic <= ic_end; ic++ ) KI_POLYGON_WITH_HOLES::iterator_type corner = curr_poly.begin();
// enter main contour
while( corner != curr_poly.end() )
{ {
int x1 = m_CornersList[ic].x; polyline->AppendCorner( corner->x(), corner->y() );
int y1 = m_CornersList[ic].y; corner++;
booleng->AddPoint( x1, y1 );
} }
polyline->CloseLastContour();
// close list added to the bool engine // add holes (set of polygons)
booleng->EndPolygonAdd(); KI_POLYGON_WITH_HOLES::iterator_holes_type hole = curr_poly.begin_holes();
while( hole != curr_poly.end_holes() )
/* now combine polygon to the previous polygons.
* note: the first polygon is the outline contour, and others are holes inside the first polygon
* The first polygon is ORed with nothing, but is is a trick to sort corners (vertex)
* clockwise with the kbool engine.
* Others polygons are substract to the outline and corners will be ordered counter clockwise
* by the kbool engine
*/
if( icont != 0 ) // substract hole to outside ( if the outline contour is take in account)
{ {
booleng->Do_Operation( BOOL_A_SUB_B ); KI_POLYGON::iterator_type hole_corner = hole->begin();
} // create area with external contour: Recreate only area edges, NOT holes
else // add outside or add holes if we do not use the outline contour while( hole_corner != hole->end() )
{ {
booleng->Do_Operation( BOOL_OR ); polyline->AppendCorner( hole_corner->x(), hole_corner->y() );
} hole_corner++;
// now use result as new polygon (delete the old one if exists)
if( m_Kbool_Poly_Engine )
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = booleng;
} }
polyline->CloseLastContour();
return 0; hole++;
}
/**
* Function armBoolEng
* Initialise parameters used in kbool
* @param aBooleng = pointer to the Bool_Engine to initialise
* @param aConvertHoles = mode for holes when a boolean operation is made
* true: in resulting polygon, holes are linked into outer contours by double overlapping segments
* false: in resulting polygons, holes are not linked: they are separate polygons
*/
void armBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
{
// set some global vals to arm the boolean engine
// input points are scaled up with GetDGrid() * GetGrid()
// DGRID is only meant to make fractional parts of input data which
/*
* The input data scaled up with DGrid is related to the accuracy the user has in his input data.
* User data with a minimum accuracy of 0.001, means set the DGrid to 1000.
* The input data may contain data with a minimum accuracy much smaller, but by setting the DGrid
* everything smaller than 1/DGrid is rounded.
*
* DGRID is only meant to make fractional parts of input data which can be
* doubles, part of the integers used in vertexes within the boolean algorithm.
* And therefore DGRID bigger than 1 is not usefull, you would only loose accuracy.
* Within the algorithm all input data is multiplied with DGRID, and the result
* is rounded to an integer.
*/
double DGRID = 1000.0; // round coordinate X or Y value in calculations to this (initial value = 1000.0 in kbool example)
// kbool uses DGRID to convert float user units to integer
// kbool unit = (int)(user unit * DGRID)
// Note: in kicad, coordinates are already integer so DGRID could be set to 1
// we can choose 1.0,
// but choose DGRID = 1000.0 solves some filling problems
// (perhaps because this allows a better precision in kbool internal calculations
double MARGE = 1.0 / DGRID; // snap with in this range points to lines in the intersection routines
// should always be >= 1/DGRID a MARGE >= 10/DGRID is ok
// this is also used to remove small segments and to decide when
// two segments are in line. ( initial value = 0.001 )
// For kicad we choose MARGE = 1/DGRID
double CORRECTIONFACTOR = 0.0; // correct the polygons by this number: used in BOOL_CORRECTION operation
// this operation shrinks a polygon if CORRECTIONFACTOR < 0
// or stretch it if CORRECTIONFACTOR > 0
// the size change is CORRECTIONFACTOR (holes are correctly handled)
double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction
double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle
double SMOOTHABER = 10.0; // accuracy when smoothing a polygon
double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen
/*
* Grid makes sure that the integer data used within the algorithm has room for extra intersections
* smaller than the smallest number within the input data.
* The input data scaled up with DGrid is related to the accuracy the user has in his input data.
* Another scaling with Grid is applied on top of it to create space in the integer number for
* even smaller numbers.
*/
int GRID = (int) ( 10000.0 / DGRID ); // initial value = 10000 in kbool example but we use
// 10000/DGRID because the scaling is made by DGRID
// on integer pcbnew units and the global scaling
// ( GRID*DGRID) must be < 30000 to avoid overflow
// in calculations (made in long long in kbool)
if( GRID <= 1 ) // Cannot be null!
GRID = 1;
aBooleng->SetMarge( MARGE );
aBooleng->SetGrid( GRID );
aBooleng->SetDGrid( DGRID );
aBooleng->SetCorrectionFactor( CORRECTIONFACTOR );
aBooleng->SetCorrectionAber( CORRECTIONABER );
aBooleng->SetSmoothAber( SMOOTHABER );
aBooleng->SetMaxlinemerge( MAXLINEMERGE );
aBooleng->SetRoundfactor( ROUNDFACTOR );
aBooleng->SetWindingRule( true ); // This is the default kbool value
if( aConvertHoles )
{
#if 1 // Can be set to 1 for kbool version >= 2.1, must be set to 0 for previous versions
// SetAllowNonTopHoleLinking() exists only in kbool >= 2.1
aBooleng->SetAllowNonTopHoleLinking( false ); // Default = true, but i have problems (filling errors) when true
#endif
aBooleng->SetLinkHoles( true ); // holes will be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( false ); // all polygons are contours, not holes
} }
else
{
aBooleng->SetLinkHoles( false ); // holes will not be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( true ); // holes are entered counter clockwise
} }
}
/** return outlines.size();
* Function NormalizeAreaOutlines
* Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s)
* @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine
* needed by the normalization
* @return the polygon count (always >= 1, becuse there is at lesat one polygon)
* There are new polygons only if the polygon count is > 1
*/
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList )
{
return NormalizeWithKbool( aNewPolygonList );
} }
/** /**
...@@ -862,10 +562,10 @@ CRect CPolyLine::GetCornerBounds() ...@@ -862,10 +562,10 @@ CRect CPolyLine::GetCornerBounds()
for( unsigned i = 0; i<m_CornersList.size(); i++ ) for( unsigned i = 0; i<m_CornersList.size(); i++ )
{ {
r.left = min( r.left, m_CornersList[i].x ); r.left = std::min( r.left, m_CornersList[i].x );
r.right = max( r.right, m_CornersList[i].x ); r.right = std::max( r.right, m_CornersList[i].x );
r.bottom = min( r.bottom, m_CornersList[i].y ); r.bottom = std::min( r.bottom, m_CornersList[i].y );
r.top = max( r.top, m_CornersList[i].y ); r.top = std::max( r.top, m_CornersList[i].y );
} }
return r; return r;
...@@ -883,10 +583,10 @@ CRect CPolyLine::GetCornerBounds( int icont ) ...@@ -883,10 +583,10 @@ CRect CPolyLine::GetCornerBounds( int icont )
for( int i = istart; i<=iend; i++ ) for( int i = istart; i<=iend; i++ )
{ {
r.left = min( r.left, m_CornersList[i].x ); r.left = std::min( r.left, m_CornersList[i].x );
r.right = max( r.right, m_CornersList[i].x ); r.right = std::max( r.right, m_CornersList[i].x );
r.bottom = min( r.bottom, m_CornersList[i].y ); r.bottom = std::min( r.bottom, m_CornersList[i].y );
r.top = max( r.top, m_CornersList[i].y ); r.top = std::max( r.top, m_CornersList[i].y );
} }
return r; return r;
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
#include <vector> #include <vector>
#include <kbool/include/kbool/booleng.h> //#include <kbool/include/kbool/booleng.h>
#include <pad_shapes.h> #include <pad_shapes.h>
#include <wx/gdicmn.h> // for wxPoint definition #include <wx/gdicmn.h> // for wxPoint definition
...@@ -210,42 +210,11 @@ public: ...@@ -210,42 +210,11 @@ public:
* Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s) * Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s)
* @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine * @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine
* needed by the normalization * needed by the normalization
* @return the polygon count (always >= 1, becuse there is at lesat one polygon) * @return the polygon count (always >= 1, because there is at least one polygon)
* There are new polygons only if the polygon count is > 1 * There are new polygons only if the polygon count is > 1
*/ */
int NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList ); int NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList );
// KBOOL functions
/**
* Function AddPolygonsToBoolEng
* Add a CPolyLine to a kbool engine, preparing a boolean op between polygons
* @param aBooleng : pointer on a bool engine (handle a set of polygons)
* @param aGroup : group to fill (aGroup = GROUP_A or GROUP_B) operations are made between GROUP_A and GROUP_B
*/
int AddPolygonsToBoolEng( Bool_Engine* aBooleng, GroupType aGroup );
/**
* Function MakeKboolPoly
* fill a kbool engine with a closed polyline contour
* @return error: 0 if Ok, 1 if error
*/
int MakeKboolPoly();
/**
* Function NormalizeWithKbool
* Use the Kbool Library to clip contours: if outlines are crossing, the self-crossing polygon
* is converted to non self-crossing polygon by adding extra points at the crossing locations
* and reordering corners
* if more than one outside contour are found, extra CPolyLines will be created
* because copper areas have only one outside contour
* Therefore, if this results in new CPolyLines, return them as std::vector pa
* @param aExtraPolyList: pointer on a std::vector<CPolyLine*> to store extra CPolyLines
* (when after normalization, there is more than one polygon with holes)
* @return number of contours, or -1 if error
*/
int NormalizeWithKbool( std::vector<CPolyLine*>* aExtraPolyList );
// Bezier Support // Bezier Support
void AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 ); void AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 );
void AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ); void AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 );
...@@ -277,7 +246,7 @@ private: ...@@ -277,7 +246,7 @@ private:
// and the len of eacvh segment // and the len of eacvh segment
// for DIAGONAL_FULL, the pitch is twice this value // for DIAGONAL_FULL, the pitch is twice this value
int m_utility; // a flag used in some calculations int m_utility; // a flag used in some calculations
Bool_Engine* m_Kbool_Poly_Engine; // polygons set in kbool engine data
public: public:
std::vector <CPolyPt> m_CornersList; // array of points for corners std::vector <CPolyPt> m_CornersList; // array of points for corners
std::vector <CSegment> m_HatchLines; // hatch lines showing the polygon area std::vector <CSegment> m_HatchLines; // hatch lines showing the polygon area
......
This source diff could not be displayed because it is too large. You can view the blob instead.
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 4.8.5 *
* Date : 15 July 2012 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2012 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 2428, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#include <vector>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
namespace ClipperLib {
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
enum PolyType { ptSubject, ptClip };
//By far the most widely used winding rules for polygon filling are
//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
//see http://glprogramming.com/red/chapter11.html
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
typedef signed long long long64;
typedef unsigned long long ulong64;
struct IntPoint {
public:
long64 X;
long64 Y;
IntPoint(long64 x = 0, long64 y = 0): X(x), Y(y) {};
friend std::ostream& operator <<(std::ostream &s, IntPoint &p);
};
typedef std::vector< IntPoint > Polygon;
typedef std::vector< Polygon > Polygons;
std::ostream& operator <<(std::ostream &s, Polygon &p);
std::ostream& operator <<(std::ostream &s, Polygons &p);
struct ExPolygon {
Polygon outer;
Polygons holes;
};
typedef std::vector< ExPolygon > ExPolygons;
enum JoinType { jtSquare, jtRound, jtMiter };
bool Orientation(const Polygon &poly);
double Area(const Polygon &poly);
void OffsetPolygons(const Polygons &in_polys, Polygons &out_polys,
double delta, JoinType jointype = jtSquare, double MiterLimit = 2);
void SimplifyPolygon(const Polygon &in_poly, Polygons &out_polys);
void SimplifyPolygons(const Polygons &in_polys, Polygons &out_polys);
void SimplifyPolygons(Polygons &polys);
void ReversePoints(Polygon& p);
void ReversePoints(Polygons& p);
//used internally ...
enum EdgeSide { esNeither = 0, esLeft = 1, esRight = 2, esBoth = 3 };
enum IntersectProtects { ipNone = 0, ipLeft = 1, ipRight = 2, ipBoth = 3 };
struct TEdge {
long64 xbot;
long64 ybot;
long64 xcurr;
long64 ycurr;
long64 xtop;
long64 ytop;
double dx;
long64 tmpX;
PolyType polyType;
EdgeSide side;
int windDelta; //1 or -1 depending on winding direction
int windCnt;
int windCnt2; //winding count of the opposite polytype
int outIdx;
TEdge *next;
TEdge *prev;
TEdge *nextInLML;
TEdge *nextInAEL;
TEdge *prevInAEL;
TEdge *nextInSEL;
TEdge *prevInSEL;
};
struct IntersectNode {
TEdge *edge1;
TEdge *edge2;
IntPoint pt;
IntersectNode *next;
};
struct LocalMinima {
long64 Y;
TEdge *leftBound;
TEdge *rightBound;
LocalMinima *next;
};
struct Scanbeam {
long64 Y;
Scanbeam *next;
};
struct OutPt; //forward declaration
struct OutRec {
int idx;
bool isHole;
OutRec *FirstLeft;
OutRec *AppendLink;
OutPt *pts;
OutPt *bottomPt;
OutPt *bottomFlag;
EdgeSide sides;
};
struct OutPt {
int idx;
IntPoint pt;
OutPt *next;
OutPt *prev;
};
struct JoinRec {
IntPoint pt1a;
IntPoint pt1b;
int poly1Idx;
IntPoint pt2a;
IntPoint pt2b;
int poly2Idx;
};
struct HorzJoinRec {
TEdge *edge;
int savedIdx;
};
struct IntRect { long64 left; long64 top; long64 right; long64 bottom; };
typedef std::vector < OutRec* > PolyOutList;
typedef std::vector < TEdge* > EdgeList;
typedef std::vector < JoinRec* > JoinList;
typedef std::vector < HorzJoinRec* > HorzJoinList;
//ClipperBase is the ancestor to the Clipper class. It should not be
//instantiated directly. This class simply abstracts the conversion of sets of
//polygon coordinates into edge objects that are stored in a LocalMinima list.
class ClipperBase
{
public:
ClipperBase();
virtual ~ClipperBase();
bool AddPolygon(const Polygon &pg, PolyType polyType);
bool AddPolygons( const Polygons &ppg, PolyType polyType);
virtual void Clear();
IntRect GetBounds();
protected:
void DisposeLocalMinimaList();
TEdge* AddBoundsToLML(TEdge *e);
void PopLocalMinima();
virtual void Reset();
void InsertLocalMinima(LocalMinima *newLm);
LocalMinima *m_CurrentLM;
LocalMinima *m_MinimaList;
bool m_UseFullRange;
EdgeList m_edges;
};
class Clipper : public virtual ClipperBase
{
public:
Clipper();
~Clipper();
bool Execute(ClipType clipType,
Polygons &solution,
PolyFillType subjFillType = pftEvenOdd,
PolyFillType clipFillType = pftEvenOdd);
bool Execute(ClipType clipType,
ExPolygons &solution,
PolyFillType subjFillType = pftEvenOdd,
PolyFillType clipFillType = pftEvenOdd);
void Clear();
bool ReverseSolution() {return m_ReverseOutput;};
void ReverseSolution(bool value) {m_ReverseOutput = value;};
protected:
void Reset();
virtual bool ExecuteInternal(bool fixHoleLinkages);
private:
PolyOutList m_PolyOuts;
JoinList m_Joins;
HorzJoinList m_HorizJoins;
ClipType m_ClipType;
Scanbeam *m_Scanbeam;
TEdge *m_ActiveEdges;
TEdge *m_SortedEdges;
IntersectNode *m_IntersectNodes;
bool m_ExecuteLocked;
PolyFillType m_ClipFillType;
PolyFillType m_SubjFillType;
bool m_ReverseOutput;
void DisposeScanbeamList();
void SetWindingCount(TEdge& edge);
bool IsEvenOddFillType(const TEdge& edge) const;
bool IsEvenOddAltFillType(const TEdge& edge) const;
void InsertScanbeam(const long64 Y);
long64 PopScanbeam();
void InsertLocalMinimaIntoAEL(const long64 botY);
void InsertEdgeIntoAEL(TEdge *edge);
void AddEdgeToSEL(TEdge *edge);
void CopyAELToSEL();
void DeleteFromSEL(TEdge *e);
void DeleteFromAEL(TEdge *e);
void UpdateEdgeIntoAEL(TEdge *&e);
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
bool IsContributing(const TEdge& edge) const;
bool IsTopHorz(const long64 XPos);
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
void DoMaxima(TEdge *e, long64 topY);
void ProcessHorizontals();
void ProcessHorizontal(TEdge *horzEdge);
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
void AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
void AppendPolygon(TEdge *e1, TEdge *e2);
void DoEdge1(TEdge *edge1, TEdge *edge2, const IntPoint &pt);
void DoEdge2(TEdge *edge1, TEdge *edge2, const IntPoint &pt);
void DoBothEdges(TEdge *edge1, TEdge *edge2, const IntPoint &pt);
void IntersectEdges(TEdge *e1, TEdge *e2,
const IntPoint &pt, IntersectProtects protects);
OutRec* CreateOutRec();
void AddOutPt(TEdge *e, const IntPoint &pt);
void DisposeBottomPt(OutRec &outRec);
void DisposeAllPolyPts();
void DisposeOutRec(PolyOutList::size_type index);
bool ProcessIntersections(const long64 botY, const long64 topY);
void AddIntersectNode(TEdge *e1, TEdge *e2, const IntPoint &pt);
void BuildIntersectList(const long64 botY, const long64 topY);
void ProcessIntersectList();
void ProcessEdgesAtTopOfScanbeam(const long64 topY);
void BuildResult(Polygons& polys);
void BuildResultEx(ExPolygons& polys);
void SetHoleState(TEdge *e, OutRec *OutRec);
void DisposeIntersectNodes();
bool FixupIntersections();
void FixupOutPolygon(OutRec &outRec);
bool IsHole(TEdge *e);
void FixHoleLinkage(OutRec *outRec);
void CheckHoleLinkages1(OutRec *outRec1, OutRec *outRec2);
void CheckHoleLinkages2(OutRec *outRec1, OutRec *outRec2);
void AddJoin(TEdge *e1, TEdge *e2, int e1OutIdx = -1, int e2OutIdx = -1);
void ClearJoins();
void AddHorzJoin(TEdge *e, int idx);
void ClearHorzJoins();
void JoinCommonEdges(bool fixHoleLinkages);
};
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
class clipperException : public std::exception
{
public:
clipperException(const char* description): m_descr(description) {}
virtual ~clipperException() throw() {}
virtual const char* what() const throw() {return m_descr.c_str();}
private:
std::string m_descr;
};
//------------------------------------------------------------------------------
} //ClipperLib namespace
#endif //clipper_hpp
project(kbool)
subdirs(src)
/*! \file _dl_itr.cpp
\brief Double Linked list with Iterators on list
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: _dl_itr.cpp,v 1.5 2009/04/23 19:35:24 titato Exp $
*/
#ifdef __UNIX__
#include "kbool/_dl_itr.h"
#endif
//=======================================================================
// implementation class DL_Node
//=======================================================================
/*! \class DL_Node
* This class is used in the class DL_List to contain the items of the list. This can be a
* pointer to an object or the object itself. The class contains a next and a previous pointer
* to connect the nodes in the list. \n
* class Dtype | Object stored at the node
*/
/*!
Construct a node for a list object
\param it Item the node will contain
*/
template <class Dtype>
DL_Node<Dtype>::DL_Node( Dtype it ) // + init nodeitem
: _item( it )
{}
/*!
Template constructor no contents
Construct a node for a list object
*/
template <class Dtype>
DL_Node<Dtype>::DL_Node()
: _item( 0 )
{}
/*!
Destruct a node object
*/
template <class Dtype>
DL_Node<Dtype>::~DL_Node()
{}
//=======================================================================
// implementation class DL_List
//=======================================================================
/*! \class DL_List
* class is the base class for implementing a double linked list. The Root node marks the begining and end of the list. The
* lists consists of nodes double linked with a next and previous pointer DL_Node The nodes are cyclic connected to the root
* node. The list is meant to be used with an iterator class, to traverse the nodes. More then 1 iterator can be attached to the
* list. The list keeps track of the number of iterators that are attached to it. Depending on this certain operations are allowed
* are not. For instance a node can only be deleted if there is only one iterator attached to the list.
* class | Dtype | Object contaning List Nodes
*/
/*!
Construct a node object
\par Example:
How to construct a list of type integer:
\code
DL_List<int> * a_list = new DL_List<int>();
\endcode
*/
template <class Dtype>
DL_List<Dtype>::DL_List()
: _nbitems( 0 ), _iterlevel( 0 )
{
_root = new DL_Node<Dtype>();
_root->_next = _root;
_root->_prev = _root;
}
/*!
//Destruct a list object
\par Example:
How to construct a list of type integer:
\code
DL_List<int> * a_list = new DL_List<int>(); # declaration and allocation
delete a_list; #delete it (must have no iterators attached to it)
\endcode
*/
template <class Dtype>
DL_List<Dtype>::~DL_List()
{
if ( _iterlevel != 0 )
throw Bool_Engine_Error( "DL_List::~DL_List()\n_iterlevel > 0 ", "list error", 0, 1 );
remove_all( false );
delete _root;
_root = 0;_nbitems = 0; //reset memory used (no lost pointers)
}
/*!
Error report for list error inside DL_List class
the error function is used internally in the list class to report errors,
the function will generate a message based on the error code.
Then an exeption will be generated using the global booleng class instance. \n
tcarg: class | Dtype | item object in list
\par Example
to call error from inside an DL_List class
\code
Error("remove_all",ITER_GT_O);
\endcode
\param function string that generated this error
\param error code to generate a message for
*/
template <class Dtype>
void DL_List<Dtype>::Error( string function, Lerror a_error )
{
string buf;
buf += "DL_List<Dtype>::";
buf += function;
switch ( a_error )
{
case NO_MES: buf += ""; break;
case EMPTY: buf += "list is empty"; break;
case ITER_GT_0: buf += "more then zero iter"; break;
case NO_LIST: buf += "no list attached"; break;
case SAME_LIST: buf += "same list not allowed"; break;
case AC_ITER_LIST_OTHER: buf += "iter not allowed on other list"; break;
default: buf += "unhandled error"; break;
}
throw Bool_Engine_Error( buf, "list error", 0, 1 );
}
/*!
is list empty (contains items or not)? \n
class | Dtype | item object in list
\return returns true is list is empty else false
\par Example
too see if list is empty
\code
DL_List<int> _intlist; #create a list of integers
if (_intlist.Empty())
cout << "empty";
\endcode
*/
template <class Dtype>
bool DL_List<Dtype>::empty()
{
return( bool )( _nbitems == 0 );
}
/*!
number of items in list \n
class | Dtype | item object in list
\return return number of items in the list
\par Example
too see if list contains only one object
\code
DL_List <int> _intlist; #create a list of integers
if (_intlist.count() == 1)
cout << "one object in list";
\endcode
*/
template <class Dtype>
int DL_List<Dtype>::count()
{
return _nbitems;
}
/*!
remove all objects from the list\n
class | Dtype | item object in list
\note
The objects itself are not deleted, only removed from the list.
The user is responsible for memory management.
\note
The iterator level must be zero to be able to use this function,
else an error will be generated
\note
Use this function if an iterator is not needed to do more complex things.
This will save time, since the iterator does not have to be created.
\par Example
too insert integer a and b into list and remove_all directly
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
int b=345;
_intlist.insbegin(a);
_intlist.insbegin(b);
_intlist.remove_all();
\endcode
*/
template <class Dtype>
void DL_List<Dtype>::remove_all( bool deleteObject )
{
if ( _iterlevel > 0 )
Error( "remove_all()", ITER_GT_0 );
Dtype* obj;
DL_Node<Dtype> *node;
for ( int i = 0; i < _nbitems; i++ )
{
node = _root->_next;
_root->_next = node->_next;
if ( deleteObject == true )
{
obj = ( Dtype* )( node->_item );
delete obj;
}
delete node;
}
_nbitems = 0;_iterlevel = 0; //reset memory used (no lost pointers)
_root->_prev = _root;
}
/*!
remove the object at the begin of the list (head).
\note
The object itself is not deleted, only removed from the list.
The user is responsible for memory management.
\note
The iterator level must be zero to be able to use this function, else an error will be generated
\note
The list must contain objects, else an error will be generated.
\note
Use this function if an iterator is not needed to do more complex things. This will save time, since the iterator does not
have to be created.
\par Example:
too insert integer a at begin of list and remove it directly.
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
_intlist.insbegin(a)
_intlist.removehead();
\endcode
*/
template <class Dtype>
void DL_List<Dtype>::removehead()
{
if ( _iterlevel > 0 )
Error( "removehead()", ITER_GT_0 );
if( _nbitems == 0 )
Error( "removehead()", EMPTY );
DL_Node<Dtype>* node = _root->_next;
node->_prev->_next = node->_next; // update forward link
node->_next->_prev = node->_prev; // update backward link
_nbitems--;
delete node; // delete list node
}
/*!
remove the object at the begin of the list (head).
\note
- The object itself is not deleted, only removed from the list.
The user is responsible for memory management.
- The iterator level must be zero to be able to use this function,
else an error will be generated
- The list must contain objects, else an error will be generated.
- Use this function if an iterator is not needed to do more complex things.
This will save time, since the iterator does not have to be created.
\par Example:
too insert integer a at end of list and remove it directly.
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
_intlist.insend(a)
_intlist.removetail();
\endcode
*/
template <class Dtype>
void DL_List<Dtype>::removetail()
{
if ( _iterlevel > 0 )
Error( "removetail()", ITER_GT_0 );
if ( _nbitems == 0 )
Error( "removehead()", EMPTY );
DL_Node<Dtype>* node = _root->_prev;
node->_prev->_next = node->_next; // update forward link
node->_next->_prev = node->_prev; // update backward link
_nbitems--;
delete node; // delete list node
}
/*!
insert the object given at the end of the list, after tail
\note
The iterator level must be zero to be able to use this function,
else an error will be generated
\note
Use this function if an iterator is not needed to do more complex things.
This will save time, since the iterator does not have to be created.
\par Example:
too insert integer a at end of list
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
_intlist.insend(a)
\endcode
\param newitem an object for which the template list was generated
*/
template <class Dtype>
DL_Node<Dtype>* DL_List<Dtype>::insend( Dtype newitem )
{
if ( _iterlevel > 0 )
Error( "insend()", ITER_GT_0 );
DL_Node<Dtype>* newnode = new DL_Node<Dtype>( newitem );
newnode ->_next = _root;
newnode ->_prev = _root->_prev;
_root->_prev->_next = newnode;
_root->_prev = newnode;
_nbitems++;
return newnode;
}
/*!
insert the object given at the begin of the list, before head
\note
The iterator level must be zero to be able to use this function,
else an error will be generated
\note
Use this function if an iterator is not needed to do more complex things.
This will save time, since the iterator does not have to be created.
\par Example:
too insert integer a at begin of list
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
_intlist.insbegin(a)
\endcode
\param newitem an object for which the template list was generated
*/
template <class Dtype>
DL_Node<Dtype>* DL_List<Dtype>::insbegin( Dtype newitem )
{
if ( _iterlevel > 0 )
Error( "insbegin()", ITER_GT_0 );
DL_Node<Dtype>* newnode = new DL_Node<Dtype>( newitem );
newnode ->_prev = _root;
newnode ->_next = _root->_next;
_root->_next->_prev = newnode;
_root->_next = newnode;
_nbitems++;
return newnode;
}
/*!
get head item
\return returns the object at the head of the list.
\par Example:
too insert integer a and b into list and make c be the value of b
which is at head of list|
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
int b=345;
int c;
_intlist.insbegin(a)
_intlist.insbegin(b)
c=_intlist.headitem()
\endcode
*/
template <class Dtype>
Dtype DL_List<Dtype>::headitem()
{
return _root->_next->_item;
}
/*!
get tail item
\return returns the object at the tail/end of the list.
\par Example:
too insert integer a and b into list and make c be the value of b which
is at the tail of list
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
int b=345;
int c;
_intlist.insbegin(a)
_intlist.insbegin(b)
c=_intlist.headitem()
\endcode
*/
template <class Dtype>
Dtype DL_List<Dtype>::tailitem()
{
return _root->_prev->_item;
}
/*!
* \note
The iterator level must be zero to be able to use this function, else an error will be generated
* \note The list may not be the same list as this list
* \param otherlist the list to take the items from
*/
template <class Dtype>
void DL_List<Dtype>::takeover( DL_List<Dtype>* otherlist )
{
if ( otherlist == 0 )
Error( "takeover(DL_List*)", NO_LIST );
// no iterators allowed on otherlist
if ( otherlist->_iterlevel > 0 )
Error( "takeover(DL_List*)", AC_ITER_LIST_OTHER );
// otherlist not this list
else if ( otherlist == this )
Error( "takeover(DL_List*)", SAME_LIST );
if ( otherlist->_nbitems == 0 )
return;
//link other list into this list at the end
_root->_prev->_next = otherlist->_root->_next;
otherlist->_root->_next->_prev = _root->_prev;
otherlist->_root->_prev->_next = _root;
_root->_prev = otherlist->_root->_prev;
//empty other list
_nbitems += otherlist->_nbitems;
otherlist->_nbitems = 0;
otherlist->_root->_next = otherlist->_root;
otherlist->_root->_prev = otherlist->_root;
}
//=======================================================================
// implementation class DL_Iter
//=======================================================================
/*! \class DL_Iter
template iterator for any list/node type\n
This class is the base class to attach/instantiate an iterator on a double linked list. \n
DL_List The iterator is used to traverse and perform functions on the nodes of a list. \n
More then 1 iterator can be attached to a list. The list keeps track of the
number of iterators that are attached to it. \n
Depending on this certain operations are allowed are not. For instance a node can
only be deleted if there is only one iterator attached to the list. \n
class | Dtype | Object for traversing a DL_List of the same Dtype
// \par Example
to insert integer a and b into list and remove_all directly using an iterator
\code
DL_List<int>* a_list = new DL_List<int>(); // declaration and allocation
int a=123;
int b=345;
{
DL_Iter<int>* a_listiter=new DL_Iter<int>(a_list);
a_listiter->insbegin(a)
a_listiter->insbegin(b)
a_listiter->remove_all()
} //to destruct the iterator before the list is deleted
delete a_list; #delete it (must have no iterators attached to it)
\endcode
*/
/*!
Error report for list error inside DL_Iter class
the error function is used internally in the iterator class to report errors,
the function will generate a message based on the error code.
Then an exception will be generated using the global booleng class instance.|
\par Example
to call error from inside an DL_List class|
\code
Error("remove_all",ITER_GT_O);
\endcode
\param function: function string that generated this error
\param a_error: error code to generate a message for
*/
template <class Dtype>
void DL_Iter<Dtype>::Error( string function, Lerror a_error )
{
string buf;
buf = "DL_Iter<Dtype>::";
buf += function;
switch ( a_error )
{
case NO_MES: buf += ""; break;
case NO_LIST: buf += "no list attached"; break;
case NO_LIST_OTHER: buf += "no list on other iter"; break;
case AC_ITER_LIST_OTHER: buf += "iter not allowed on other list"; break;
case SAME_LIST: buf += "same list not allowed"; break;
case NOT_SAME_LIST: buf += "must be same list"; break;
case ITER_GT_1: buf += "more then one iter"; break;
case ITER_HITROOT: buf += "iter at root"; break;
case NO_ITEM: buf += "no item at current"; break;
case NO_NEXT: buf += "no next after current"; break;
case NO_PREV: buf += "no prev before current"; break;
case EMPTY: buf += "list is empty"; break;
case NOT_ALLOW: buf += "not allowed"; break;
case ITER_NEG: buf += "to much iters deleted"; break;
default: buf += "unhandled error"; break;
}
throw Bool_Engine_Error( buf, "list error", 0, 1 );
}
/*!
Construct an iterator object for a given list of type Dtype \n
tcarg: class | Dtype | list item object
\par Example
How to construct a list of type integer and an iterator for it:
\code
DL_List<int>* IntegerList;
IntegerList = new DL_List<int>();
DL_Iter<int>* a_listiter=new DL_Iter<int>(IntegerList);
\endcode
\param newlist: list for the iterator
*/
template <class Dtype>
DL_Iter<Dtype>:: DL_Iter( DL_List<Dtype>* newlist )
: _list( newlist ), _current( RT )
{
_list->_iterlevel++; // add 1 to DL_Iters on list
}
/*!
This constructs an iterator for a list using an other iterator on the same list,
The new iterator will be pointing to the same list item as the other iterator.\n
tcarg: class | Dtype | list item object
\par Example
How to construct a list of type integer and a second iterator for it:|
\code
DL_List<int>* IntegerList;
IntegerList = new DL_List<int>();
DL_Iter<int>* a_listiter=new DL_Iter<int>(IntegerList);
DL_Iter<int>* a_secondlistiter=new DL_Iter<int>(a_listiter);
\endcode
\param otheriter other iterator on same list
*/
template <class Dtype>
DL_Iter<Dtype>:: DL_Iter( DL_Iter* otheriter )
{
if ( otheriter->_current == 0 )
Error( "DL_Iter(otheriter)", NO_LIST_OTHER );
_list = otheriter->_list;
_list->_iterlevel++; // add 1 to DL_Iters on List
_current = otheriter->_current;
}
/*!
This constructs an iterator for a list of a given type, the list does not have to exist.
Later on when a list is constructed,the iterator can be attached to it.
This way an iterator to a specific list can be made static to a class, and can be used
for several lists at the same time. \n
tcarg: class | Dtype | list item object
\par Example
How to construct an iterator, without having a list first.
This constructs an iterator for a list of the given type, but the list thus not yet exist.
\code
DL_Iter<int>* a_iter=new DL_Iter<int>();
DL_List<int>* IntegerList;
IntegerList = new DL_List<int>();
a_iter.Attach(IntegerList);
a_iter.insend(123);
a_iter.Detach();
\endcode
*/
template <class Dtype>
DL_Iter<Dtype>:: DL_Iter()
: _list( 0 ), _current( 0 )
{}
/*!
destruct an iterator for a list of a given type.
*/
template <class Dtype>
DL_Iter<Dtype>::~DL_Iter()
{
if ( _current == 0 )
return;
_list->_iterlevel--; // decrease iterators
if ( _list->_iterlevel < 0 )
Error( "~DL_Iter()", ITER_NEG );
}
/*!
This attaches an iterator to a list of a given type, the list must exist.
This way an iterator to a specific list can be made
static to a class, and can be used for several lists at the same time.\n
!tcarg: class | Dtype | list item object
\par Example
How to construct an iterator, without having a list first, and attach an iterator later:|
\code
DL_Iter<int>* a_iter=new DL_Iter<int>();
DL_List<int>* IntegerList;
IntegerList = new DL_List<int>();
a_iter.Attach(IntegerList);
a_iter.insend(123);
a_iter.Detach();
\endcode
\param newlist the list to attached the iterator to
*/
template <class Dtype>
void DL_Iter<Dtype>::Attach( DL_List<Dtype>* newlist )
{
if ( _current != 0 )
Error( "Attach(list)", NOT_ALLOW );
_list = newlist;
_current = HD;
_list->_iterlevel++; // add 1 to DL_Iters on list
}
/*!
This detaches an iterator from a list of a given type, the list must exist.
This way an iterator to a specific list can be made static to a class,
and can be used for several lists at the same time. \n
!tcarg: class | Dtype | list item object
\par Example:
How to construct an iterator, without having a list first, and attach an iterator later:
\code
DL_Iter<int>* a_iter=new DL_Iter<int>();
DL_List<int>* IntegerList;
IntegerList = new DL_List<int>();
a_iter.Attach(IntegerList);
a_iter.insend(123);
a_iter.Detach();
\endcode
\param newlist: the list to attached the iterator to
*/
template <class Dtype>
void DL_Iter<Dtype>::Detach()
{
if ( _current == 0 )
Error( "Attach()", NO_LIST );
_list->_iterlevel--; // subtract 1 from DL_Iters on list
_list = 0;
_current = 0;
}
/*
// copy pointers to items from other list
template <class Dtype> void DL_Iter<Dtype>::merge(DL_List<Dtype>* otherlist)
{
DL_Node* node=otherlist->HD; //can be 0 if empty
for(int i=0; i<otherlist->NB; i++)
{
insend(node->new_item); // insert item at end
node=node->_next; // next item of otherlist
}
}
*/
/*
//call Dtype::mfp for each item
template <class Dtype>
void DL_Iter<Dtype>::foreach_mf(void (Dtype::*mfp)())
{
DL_Node<Dtype>* node=HD; //can be 0 if empty
for(int i=0; i< NB; i++)
{
((node->_item).*mfp)();
node=node->_next;
}
}
*/
/*! call given function for each item*/
template <class Dtype>
void DL_Iter<Dtype>::foreach_f( void ( *fp ) ( Dtype n ) )
{
DL_Node<Dtype>* node = HD; //can be 0 if empty
for( int i = 0; i < NB; i++ )
{
fp ( node->_item );
node = node->_next;
}
}
/*!
to move all objects in a list to the list of the iterator.
\note
The iterator level must be one to be able to use this function,
else an error will be generated
\note
The list may not be the same list as the iterator list
\par Example
to take over all items in _intlist|
\code
DL_List<int> _intlist; #create a list of integers
DL_List<int> _intlist2; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter2=new DL_Iter<int>(&_intlist2);
_intlist->insend(a) // insert at end
a_listiter2->takeover(_intlist)
\endcode
\param otherlist the list to take the items from
*/
template <class Dtype>
void DL_Iter<Dtype>::takeover( DL_List<Dtype>* otherlist )
{
if ( _current == 0 )
Error( "takeover(DL_List*)", NO_LIST );
// no iterators allowed on otherlist
if ( otherlist->_iterlevel > 0 )
Error( "takeover(DL_List*)", AC_ITER_LIST_OTHER );
// otherlist not this list
else if ( otherlist == _list )
Error( "takeover(DL_List*)", SAME_LIST );
if ( otherlist->_nbitems == 0 )
return;
//link other list into this list at the end
TL->_next = otherlist->_root->_next;
otherlist->_root->_next->_prev = TL;
otherlist->_root->_prev->_next = RT;
TL = otherlist->_root->_prev;
//empty other list
NB += otherlist->_nbitems;
otherlist->_nbitems = 0;
otherlist->_root->_next = otherlist->_root;
otherlist->_root->_prev = otherlist->_root;
}
/*!
to move all objects in a list (using iterator of that list) to the list of the iterator.
\note
The iterator level for both iterators must be one to be able to use this function,
\note
else an error will be generated
\note
The list may not be the same list as the iterator list
\par Example
to take over all items in a_listiter1 it's list|
\code
DL_List<int> _intlist; #create a list of integers
DL_List<int> _intlist2; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter1=new DL_Iter<int>(&_intlist);
DL_Iter<int>* a_listiter2=new DL_Iter<int>(&_intlist2);
a_listiter1->insend(a) // insert at end
a_listiter2->takeover(a_listiter1)
\\!to move all objects in a list (using iterator of that list) to the list of the iterator
\endcode
\param otheriter: the iterator to take the items from
*/
template <class Dtype>
void DL_Iter<Dtype>::takeover( DL_Iter* otheriter )
{
if ( otheriter->_current == 0 )
Error( " DL_Iter", NO_LIST_OTHER );
if ( _current == 0 )
Error( " DL_Iter", NO_LIST );
// only one iterator allowed on other list?
if ( otheriter->_list->_iterlevel > 1 )
Error( "takeover(DL_Iter*)", AC_ITER_LIST_OTHER );
// otherlist not this list?
else if ( otheriter->_list == _list )
Error( "takeover(DL_Iter*)", SAME_LIST );
if ( otheriter->NB == 0 )
return;
//link other list into this list at the end
TL->_next = otheriter->HD;
otheriter->HD->_prev = TL;
otheriter->TL->_next = RT;
TL = otheriter->TL;
//empty other iter & list
NB += otheriter->NB;
otheriter->NB = 0;
otheriter->HD = otheriter->RT;
otheriter->TL = otheriter->RT;
otheriter->_current = otheriter->RT;
}
/*!
to move maxcount objects in a list (using iterator of that list)
to the list of the iterator.
\note The iterator level for both iterators must be one to be able to use this function,
else an error will be generated
\note The list may not be the same list as the iterator list
\note If less then maxcount objects are available in the source iterator,
all of them are taken and no error will accur
\par Example
to take over 1 item from a_listiter1 it's list
\code
DL_List<int> _intlist; #create a list of integers
DL_List<int> _intlist2; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter1=new DL_Iter<int>(&_intlist);
DL_Iter<int>* a_listiter2=new DL_Iter<int>(&_intlist2);
a_listiter1->insend(a) // insert at end
a_listiter2->takeover(a_listiter1,1);
//! to move maxcount objects in a list (using iterator of that list) to the list of the iterator
\endcode
\param otheriter the iterator to take the items from
\param maxcount maximum number of objects to take over
*/
template <class Dtype>
void DL_Iter<Dtype>::takeover( DL_Iter* otheriter, int maxcount )
{
if ( otheriter->_current == 0 )
Error( "takeover(DL_Iter*,int)", NO_LIST_OTHER );
if ( _current == 0 )
Error( "takeover(DL_Iter*,int)", NO_LIST );
if ( otheriter->_list->_iterlevel > 1 )
Error( "takeover(DL_Iter*,int)", AC_ITER_LIST_OTHER );
else if ( otheriter->_list == _list )
Error( "takeover(DL_Iter*,int)", SAME_LIST );
if ( maxcount < 0 )
Error( "takeover(DL_Iter*,int), maxcount < 0", NO_MES );
if ( otheriter->NB == 0 )
return;
if ( otheriter->NB <= maxcount )
{ //take it all
//link other list into this list at the end
TL->_next = otheriter->HD;
otheriter->HD->_prev = TL;
otheriter->TL->_next = RT;
TL = otheriter->TL;
//empty other iter & list
NB += otheriter->NB;
otheriter->NB = 0;
otheriter->HD = otheriter->RT;
otheriter->TL = otheriter->RT;
otheriter->_current = otheriter->RT;
}
else
{ //take maxcount elements from otheriter
//set cursor in otherlist to element maxcount
DL_Node<Dtype>* node;
if ( NB / 2 < maxcount )
{ // this is faster (1st half)
node = otheriter->HD;
for( int i = 1; i < maxcount; i++ )
node = node->_next;
}
else
{ // no, this is faster (2nd half)
node = otheriter->TL;
for( int i = NB; i > maxcount + 1; i-- )
node = node->_prev;
}
// link this->tail to other->head
if ( NB > 0 )
{
TL->_next = otheriter->HD;
otheriter->HD->_prev = TL;
}
else // target is empty
{
HD = otheriter->HD;
otheriter->HD->_prev = RT;
}
// set other root to node-> next (after last to copy)
otheriter->HD = node->_next;
otheriter->HD->_prev = otheriter->RT;
// set this->tail to other->item()->prev (last element to be copied)
TL = node;
node->_next = RT;
// still need to update element counter
NB += maxcount;
// update other list
otheriter->NB -= maxcount;
otheriter->_current = otheriter->HD; // other->current is moved to this!
}
}
/*!
put the iterator root object before the current iterator position in the list.
The current object will become the new head of the list.
\note The iterator level must be one to be able to use this function,
else an error will be generated
\par Example
move the root object to make the new head the old tail object|
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->totail();
a_listiter->reset_head();
a_listiter->tohead(); //the new head will be at object 3456
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::reset_head()
{
if ( _current == 0 )
Error( "reset_head()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "reset_head()", ITER_GT_1 );
if( _current == RT )
Error( "reset head()", ITER_HITROOT );
//link out RT
HD->_prev = TL;
TL->_next = HD;
//link in RT before current
HD = _current;
TL = _current->_prev;
TL->_next = RT;
HD->_prev = RT;
}
/*!
put the iterator root object after the current iterator position in the list.
The current object will become the new tail of the list.
\note
The iterator level must be one to be able to use this function,
else an error will be generated
\par Example
move the root object to make the new tail the old head object
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->tohead();
a_listiter->reset_tail();
a_listiter->totail(); //the new tail will be at object 1234
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::reset_tail()
{
if ( _current == 0 )
Error( "reset_tail()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "reset_tail()", ITER_GT_1 );
if( _current == RT )
Error( "reset head()", ITER_HITROOT );
//link out RT
HD->_prev = TL;
TL->_next = HD;
//link in RT after current
TL = _current;
HD = _current->_next;
HD->_prev = RT;
TL->_next = RT;
}
/*!
is list empty (contains items or not)?
\return returns true is list is empty else false
\par exmaple:
too see if list is empty
\code
DL_List<int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
if (a_listiter->Empty())
cout << "empty"
\endcode
*/
template <class Dtype>
bool DL_Iter<Dtype>::empty()
{
if ( _current == 0 )
Error( "empty()", NO_LIST );
return( bool )( NB == 0 );
}
/*!
is the iterator at the root of the list.
\note Traversing the list in a certain direction using a while loop,
the end can be tested with this function.
\return returns true if the iterator is at the root of the list (after the last/tail/head object), else false.
\par example:
to traverse in both directions|
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->tohead();
//traverse forwards
while ( ! a_listiter->hitroot())
{
cout << "The item =" << a_listiter->item();
a_listiter++; //goto next object
}
a_listiter->totail();
//traverse backwards
while ( ! a_listiter->hitroot())
{
cout << "The item =" << a_listiter->item();
a_listiter--; //goto next object
}
\endcode
*/
template <class Dtype>
bool DL_Iter<Dtype>::hitroot()
{
if ( _current == 0 )
Error( "hitroot()", NO_LIST );
return( bool )( _current == RT );
}
/*!
is the iterator at the head of the list.
\return returns true if the iterator is at the head object of the list, else false.
\par exmaple:
too see the object at the head
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->tohead();
if (a_listiter->athead())
cout << "at the head The item =" << a_listiter->item();
\endcode
*/
template <class Dtype>
bool DL_Iter<Dtype>::athead()
{
if ( _current == 0 )
Error( "athead()", NO_LIST );
return( bool )( _current == HD );
}
/*!
is the iterator at the tail of the list.
\return returns true if the iterator is at the tail object of the list,
else false.
\par Example
too see the object at the tail|
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->totail();
if (a_listiter->attail())
cout << "at the tail The item =" << a_listiter->item();
\endcode
*/
template <class Dtype>
bool DL_Iter<Dtype>::attail()
{
if ( _current == 0 )
Error( "attail()", NO_LIST );
return( bool )( _current == TL );
}
/*!
does the iterator/list contain the given object
\return returns true if the iterator/list contains the given object in the list, else false.
\par Example
too see if the object is already in the list
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
if (a_listiter->has(1234))
cout << "yes it does";
\endcode
\param otheritem item to search for
*/
template <class Dtype>
bool DL_Iter<Dtype>::has( Dtype otheritem )
{
if ( _current == 0 )
Error( "has()", NO_LIST );
DL_Node<Dtype>* node = HD; //can be 0 if empty
for( int i = 0; i < NB; i++ )
{
if ( node->_item == otheritem )
return true;
node = node->_next;
}
return false;
}
/*!
number of items in list
\return number of items in the list
\par Example:
to see if a list contains only one object
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
if (a_listiter->count() == 1)
cout << "one object in list";
\endcode
*/
template <class Dtype>
int DL_Iter<Dtype>::count()
{
if ( _current == 0 )
Error( "count()", NO_LIST );
return NB;
}
/*!
go to first item, if list is empty goto hite
\par Example
set iterator to head of list
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->tohead();
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::tohead()
{
if ( _current == 0 )
Error( "tohead()", NO_LIST );
_current = HD;
}
/*!
go to last item, if list is empty goto hite
\par Example
set iterator to tail of list
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->totail();
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::totail()
{
if ( _current == 0 )
Error( "totail()", NO_LIST );
_current = TL;
}
/*!
set the iterator position to the root (empty dummy) object in the list.
\par Example
set iterator to root of list and iterate
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->toroot();
while (a_listiter->iterate())
cout << a_listiter->item();
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::toroot()
{
if ( _current == 0 )
Error( "toroot()", NO_LIST );
_current = RT;
}
/*!
set the iterator position to next object in the list ( can be the root also)(prefix).
\par Example
how to iterate backwards
\code
DL_List <int> _intlist; //create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->tohead();
while (!a_listiter->hitroot())
{
cout << a_listiter->item();
_listiter++;
}
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::operator++( void )
{
if ( _current == 0 )
Error( "operator++()", NO_LIST );
_current = _current->_next;
}
/*!
set the iterator position to next object in the list ( can be the root also)(prefix).
\par Example
how to iterate backwards
\code
DL_List <int> _intlist; //create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->tohead();
while (!a_listiter->hitroot())
{
cout << a_listiter->item();
++_listiter;
}
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::operator++( int )
{
if ( _current == 0 )
Error( "operator++(int)", NO_LIST );
_current = _current->_next;
}
/*!
set the iterator position to previous object in the list ( can be the root also)(prefix).
\par Example
how to iterate backwards
\code
DL_List <int> _intlist; //create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->totail();
while (!a_listiter->hitroot())
{
cout << a_listiter->item();
_listiter--;
}
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::operator--( void )
{
if ( _current == 0 )
Error( "operator++()", NO_LIST );
_current = _current->_prev;
}
/*!
set the iterator position to previous object in the list ( can be the root also)(prefix).
\par Example
how to iterate backwards
\code
DL_List <int> _intlist; //create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->totail();
while (!a_listiter->hitroot())
{
cout << a_listiter->item();
--_listiter;
}
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::operator--( int )
{
if ( _current == 0 )
Error( "operator++(int)", NO_LIST );
_current = _current->_prev;
}
/*!
set the iterator position n objects in the next direction ( can be the root also).
\par Example:
how to set iterator 2 items forward
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->tohead();
a_listiter>>2;//at root now
\endcode
\param n go n places forward
*/
template <class Dtype>
void DL_Iter<Dtype>::operator>>( int n )
{
if ( _current == 0 )
Error( "operator>>()", NO_LIST );
for( int i = 0; i < n; i++ )
_current = _current->_next;
}
/*!
set the iterator position n objects in the previous direction ( can be the root also).
\par Example:
how to set iterator 2 items backwards
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->totail();
a_listiter<<2;//at root now
\endcode
\param n go n places back
*/
template <class Dtype>
void DL_Iter<Dtype>::operator<<( int n )
{
if ( _current == 0 )
Error( "operator<<()", NO_LIST );
for( int i = 0; i < n; i++ )
_current = _current->_prev;
}
/*!
put the iterator at the position of the given object in the list.
\return returns true if the object was in the list, else false
\par Example:
goto element 2345
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->toitem(2345); template <class Dtype>
\endcode
*/
template <class Dtype>
bool DL_Iter<Dtype>::toitem( Dtype item )
{
if ( _current == 0 )
Error( "toitem(item)", NO_LIST );
DL_Node<Dtype>* node = HD; //can be 0 if empty
for( int i = 0; i < NB; i++ )
{
if ( node->_item == item )
{
_current = node;
return true;
}
node = node->_next;
}
return false;
}
/*!
put the iterator at the same position as the given iterator in the list.
\par Example:
goto element 2345 and let a_listiter2 point to the same position
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
DL_Iter<int>* a_listiter2=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->toitem(2345);
a_listiter2->toiter(a_listiter2);
\endcode
\param otheriter other iterator to let this iterator point to.
*/
template <class Dtype>
void DL_Iter<Dtype>::toiter( DL_Iter *otheriter )
{
if ( otheriter->_current == 0 )
Error( "toiter(otheriter)", NO_LIST );
// both iters must have the same list
if ( _list != otheriter->_list )
Error( "toiter(otheriter)", NOT_SAME_LIST );
_current = otheriter->_current;
}
/*!
put the iterator at the position of the given object in the list.
\note DO NOT use this function. Normally you will not be able to address the nodes in a list.
\return returns true if the node was in the list, else false
\param othernode a node to let this iterator point to.
*/
template <class Dtype>
bool DL_Iter<Dtype>::tonode( DL_Node<Dtype> *othernode )
{
DL_Node<Dtype>* node = HD; //can be 0 if empty //node is a temporary cursor
for( int i = 0; i < NB; i++ )
{
if ( node == othernode )
{
_current = othernode;
return true;
}
node = node->_next;
}
return false;
}
/*!
advance the iterator one position in the next direction in the list.
\return returns true if not at the end/root of the list else false.
\note This function combines iteration and testing for the end of
the list in one.
\note Therefore we do not have to advance the iterator ourselves.
\note
The iterator is first put to the next object, before testing for the end of the list. |
This is why we need to start at the root element in general usage.
\par Example
iterate through all the items in a list
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->tobegin(2345);
while (a_listiter->iterate())
{ cout << a_listiter->item(); }
\endcode
*/
template <class Dtype>
bool DL_Iter<Dtype>::iterate( void )
{
if ( _current == 0 )
Error( "iterate()", NO_LIST );
_current = _current->_next;
if ( _current == RT )
return false;
return true;
}
/*!
To get the item at the current iterator position
\return returns the object where the iterator is pointing to at the moment.
\note
If the iterator is at the root of the list an error will be generated,
since there is no item there.
\par Example:
get the element at the head of the list|
\code
DL_List <int> _intlist; //create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->tohead();
int theitem=a_listiter->item();
\endcode
*/
template <class Dtype>
Dtype DL_Iter<Dtype>::item()
{
if ( _current == 0 )
Error( "item()", NO_LIST );
if ( _current == RT )
Error( "item()", NO_ITEM );
return _current->_item;
}
//! get the node at iterater position
template <class Dtype>
DL_Node<Dtype>* DL_Iter<Dtype>::node()
{
if ( _current == 0 )
Error( "item()", NO_LIST );
if ( _current == RT )
Error( "item()", NO_ITEM );
return _current;
}
/*!
set the iterator position to next object in the list ( can be the root also).
\note Use this function inside a new class derived from DL_Iter.
*/
template <class Dtype>
void DL_Iter<Dtype>::next()
{
if ( _current == 0 )
Error( "item()", NO_LIST );
_current = _current->_next;
}
/*!
set the iterator position to next object in the list, if this would be the root object,
then set the iterator at the head object
\par Example
cycle the list twice
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->tohead();
int count=2*a_listiter->count();
while (count)
{
cout << a_listiter->item();
next_wrap();
count--;
}
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::next_wrap()
{
if ( _current == 0 )
Error( "item()", NO_LIST );
_current = _current->_next;
if ( _current == RT )
_current = _current->_next;
}
/*!
set the iterator position to previous object in the list ( can be the root also).
\note Use this function inside a new class derived from DL_Iter.
*/
template <class Dtype>
void DL_Iter<Dtype>::prev()
{
if ( _current == 0 )
Error( "item()", NO_LIST );
_current = _current->_prev;
}
/*!
set the iterator position to previous object in the list, if this would be the root object,
then set the iterator at the tail object
\par Example
cycle the list twice
\code
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(1234);
a_listiter->insend(2345);
a_listiter->totail();
int count=2*a_listiter->count();
while (count)
{
cout << a_listiter->item();
prev_wrap();
count--;
}
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::prev_wrap()
{
if ( _current == 0 )
Error( "item()", NO_LIST );
_current = _current->_prev;
if ( _current == RT )
_current = _current->_prev;
}
template <class Dtype>
void DL_Iter<Dtype>::remove_all()
{
if ( _current == 0 )
Error( "remove_all()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "remove_all()", ITER_GT_1 );
_list->_iterlevel--;
_list->remove_all();
_list->_iterlevel++;
_current = RT;
}
/*!
remove object at current iterator position from the list.
\note The object itself is not deleted, only removed from the list. The user is responsible for memory management.
\note The iterator level must be one to be able to use this function, else an error will be generated
\note The list must contain an object at the current iterator position, else an error will be generated.
\par Example:
to insert integer a at begin of list and remove it directly
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insbegin(a);
a_listiter->tohead();
a_listiter->remove();
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::remove()
{
if ( _current == 0 )
Error( "remove()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "remove()", ITER_GT_1 );
if ( _current == RT )
Error( "remove()", ITER_HITROOT );
DL_Node<Dtype>* node = _current;
_current = _current->_next;
node->_prev->_next = node->_next; // update forward link
node->_next->_prev = node->_prev; // update backward link
NB--;
delete node; // delete list node
}
/*!
remove the object at the begin of the list using an iterator
\note The object itself is not deleted, only removed from the list. The user is responsible for memory management.
\note The iterator level must be one to be able to use this function, else an error will be generated
\note The list must contain objects, else an error will be generated.
\note Use this function if an iterator is needed to do more complex things. Else use the list member functions directly.
\par Example:
to insert integer a at begin of list and remove it directly|
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insbegin(a);
a_listiter->removehead();
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::removehead()
{
if ( _current == 0 )
Error( "removehead()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "removehead()", ITER_GT_1 );
if( NB == 0 )
Error( "removehead()", EMPTY );
if ( _current == HD )
_current = _current->_next;
_list->_iterlevel--;
_list->removehead();
_list->_iterlevel++;
}
/*!
//remove the object at the end of the list using an iterator
\note The object itself is not deleted, only removed from the list. The user is responsible for memory management.
\note The iterator level must be one to be able to use this function, else an error will be generated
\note The list must contain objects, else an error will be generated.
\note Use this function if an iterator is needed to do more complex things. Else use the list member functions directly.
\par Example:
to insert integer a at end of list and remove it directly
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(a);
a_listiter->removetail();
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::removetail()
{
if ( _current == 0 )
Error( "removetail()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "removetail()", ITER_GT_1 );
if ( NB == 0 )
Error( "removehead()", EMPTY );
if ( _current == TL )
_current = _current->_prev;
_list->_iterlevel--;
_list->removetail();
_list->_iterlevel++;
}
/*!
insert the object given at the end of the list
\note The iterator level must be one to be able to use this function, else an error will be generated
\note Use this function if an iterator is needed to do more complex things. Else use the list member functions directly.
\par Example:
to insert integer a at end of list|
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(a);
\endcode
*/
template <class Dtype>
DL_Node<Dtype>* DL_Iter<Dtype>::insend( Dtype newitem )
{
if ( _current == 0 )
Error( "insend()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "insend()", ITER_GT_1 );
_list->_iterlevel--;
DL_Node<Dtype>* ret = _list->insend( newitem );
_list->_iterlevel++;
return ret;
}
/*!
insert the object given at the begin of the list
\note The iterator level must be one to be able to use this function, else an error will be generated
\note Use this function if an iterator is needed to do more complex things. Else use the list member functions directly.
\par Example:
to insert integer a at begin of list|
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insbegin(a);
\endcode
\param newitem an object for which the template list/iterator was generated
*/
template <class Dtype>
DL_Node<Dtype>* DL_Iter<Dtype>::insbegin( Dtype newitem )
{
if ( _current == 0 )
Error( "insbegin()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "insbegin()", ITER_GT_1 );
_list->_iterlevel--;
DL_Node<Dtype>* ret = _list->insbegin( newitem );
_list->_iterlevel++;
return ret;
}
/*!
//insert the object given before the current position of the iterator in list
\note The iterator level must be one to be able to use this function, else an error will be generated
\par Example:
to insert integer before the iterator position in the list|
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->totail();
a_listiter->insbefore(a); // insert before tail
\endcode
\param newitem an object for which the template list/iterator was generated
*/
template <class Dtype>
DL_Node<Dtype>* DL_Iter<Dtype>::insbefore( Dtype newitem )
{
if ( _current == 0 )
Error( "insbefore()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "insbefore()", ITER_GT_1 );
DL_Node<Dtype>* newnode = new DL_Node<Dtype>( newitem );
newnode ->_next = _current;
_current->_prev->_next = newnode;
newnode ->_prev = _current->_prev;
_current->_prev = newnode;
NB++;
return newnode;
}
/*!
insert the object given after the current position of the iterator in list
\note The iterator level must be one to be able to use this function, else an error will be generated
\par Example: to insert integer after the iterator position in the list|
\code
DL_List<int> _intlist; #create a list of integers
int a=123;
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->tohead();
a_listiter->insafter(a); // insert after head
\endcode
\param newitem an object for which the template list/iterator was generated
*/
template <class Dtype>
DL_Node<Dtype>* DL_Iter<Dtype>::insafter( Dtype newitem )
{
if ( _current == 0 )
Error( "insafter()", NO_LIST );
if ( _list->_iterlevel > 1 )
Error( "insafter()", ITER_GT_1 );
DL_Node<Dtype>* newnode = new DL_Node<Dtype>( newitem );
newnode ->_next = _current->_next;
newnode ->_prev = _current;
_current->_next->_prev = newnode;
_current->_next = newnode;
NB++;
return newnode;
}
/*!
sort all items in the list according to the compare function.
when items need to be swapped to reach the right order the swap function will be called also.
\note There are no restrictions on the internal decision in the compare function when to return -1,0,1.
\note The swap function can be used to change items when they are swapped.
fcmp (function, fcmp)
\verbatim
Declaration: int (*fcmp) (Dtype,Dtype)
compare function pointer, the function takes two objects in the list. It must return -1, 0, 1, to sort the list in upgoing
order the function should return:
-1 is returned if the first object is bigger then the second.
0 is returned if the objects are equal.
1 is returned if the first object is smaller then the second.
To sort the list in downgoing order:
1 is returned if the first object is bigger then the second.
0 is returned if the objects are equal.
-1 is returned if the first object is smaller then the second.
fswap (function, fswap)
Declaration: void (*fswap) (Dtype,Dtype)
swap function pointer, the function takes two objects in the list. It will be called when the objects are swapped to
reach the right order. If it is NULL, it will not be called.
\endverbatim
\par Example: sort the list in upgoing order using cocktailsort and the function numbersorter|
\code
int numbersorter(int a,int b)
{
if(a < b) return(1);
else
if(a == b) return(0);
return(-1);
}
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->insend(1234);
a_listiter->cocktailsort(numbersorter,NULL);
\endcode
\param fcmp sortfunction
\param fswap swapfunction
*/
template <class Dtype>
int DL_Iter<Dtype>::cocktailsort( int ( *fcmp ) ( Dtype, Dtype ), bool ( *fswap )( Dtype, Dtype ) )
{
if ( _current == 0 )
Error( "cocktailsort()", NO_LIST );
if ( NB <= 1 )
return 0;
DL_Node<Dtype>* cursor;
Dtype swap;
int swapResult = 0;
// boven/ondergrens setten
DL_Node<Dtype> *bg = TL, *bgold = TL;
DL_Node<Dtype> *og = HD, *ogold = HD;
bool swapped = true;
// while swaping is done & lowerborder upperborder don't touch
while ( swapped && ( og != bg ) )
{
swapped = false;
// BUBBELSLAG lowerborder--->> upperborder
cursor = og;
while( !( cursor == bgold ) )
{
// (current.next < current)?
if( fcmp( cursor->_next->_item, cursor->_item ) == 1 )
{
// user function
if ( fswap != NULL )
if ( fswap( cursor->_item, cursor->_next->_item ) )
swapResult++;
// update swap-flag en upperborder
swapped = true;
bg = cursor;
// swap the items of the nodes
swap = cursor->_item;
cursor->_item = cursor->_next->_item;
cursor->_next->_item = swap;
}
cursor = cursor->_next;
}// end bubbelslag
bgold = bg;
// BRICKSLAG lowerborder <<---upperborder
cursor = bg;
while( !( cursor == ogold ) )
{
// (current < current.next)?
if( fcmp( cursor->_item, cursor->_prev->_item ) == 1 )
{
// user function
if ( fswap != NULL )
if ( fswap( cursor->_item, cursor->_prev->_item ) )
swapResult++;
// update swap-flag and lowerborder
swapped = true;
og = cursor;
// swap de items van de nodes
swap = cursor->_item;
cursor->_item = cursor->_prev->_item;
cursor->_prev->_item = swap;
}
cursor = cursor->_prev;
}// end brickslag
ogold = og;
}// end while(ongesorteerd)
return swapResult;
}
/*!
sort all items in the list according to the compare function.
\note
There are no restrictions on the internal decision in the compare function when to return -1,0,1.
\note
For the mergesort function the objects will be swapped when the return value is -1.
\note
\verbatim
fcmp (function, fcmp)
Declaration: int (*fcmp) (Dtype,Dtype)
compare function pointer, the function takes two objects in the list. It must return -1, 0, 1, to sort the list in upgoing
order the function should return:
-1 is returned if the first object is bigger then the second.
0 is returned if the objects are equal.
1 is returned if the first object is smaller then the second.
To sort the list in downgoing order:
1 is returned if the first object is bigger then the second.
0 is returned if the objects are equal.
-1 is returned if the first object is smaller then the second.
\endverbatim
!tcarg: class | Dtype | list item object
\par example
sort the list in upgoing order using mergesort and the function numbersorter|
\code
int numbersorter(int a,int b)
{
if(a < b) return(1);
else
if(a == b) return(0);
return(-1);
}
DL_List <int> _intlist; #create a list of integers
DL_Iter<int>* a_listiter=new DL_Iter<int>(&_intlist);
a_listiter->insend(2345);
a_listiter->insend(3456);
a_listiter->insend(1234);
a_listiter->mergesort(numbersorter);
\endcode
*/
template <class Dtype>
void DL_Iter<Dtype>::mergesort( int ( *fcmp ) ( Dtype, Dtype ) )
{
if ( _current == 0 )
Error( "mergesort()", NO_LIST );
mergesort_rec( fcmp, RT, NB );
}
template <class Dtype>
void DL_Iter<Dtype>::mergesort_rec( int ( *fcmp )( Dtype, Dtype ), DL_Node<Dtype> *RT1, int n1 )
{
if ( n1 > 1 ) //one element left then stop
{
DL_Node<Dtype> RT2;
int n2;
RT2._prev = RT1->_prev;
RT2._next = RT1->_next;
// goto middle
n2 = n1;n1 >>= 1;n2 -= n1;
for ( int i = 0; i < n1;i++ )
RT2._next = RT2._next->_next;
//RT2 is at half
RT1->_prev->_next = &RT2;
RT2._prev = RT1->_prev;
RT1->_prev = RT2._next->_prev;
RT2._next->_prev->_next = RT1;
mergesort_rec( fcmp, RT1, n1 );
mergesort_rec( fcmp, &RT2, n2 );
mergetwo( fcmp, RT1, &RT2 );
}
}
template <class Dtype>
void DL_Iter<Dtype>::mergetwo( int ( *fcmp )( Dtype, Dtype ), DL_Node<Dtype> *RT1, DL_Node<Dtype> *RT2 )
{
DL_Node<Dtype> *c, *a, *b;
a = RT1->_next;b = RT2->_next;
c = RT1;
do
{
if ( fcmp( a->_item , b->_item ) > -1 )
{ c->_next = a;a->_prev = c;c = a;a = a->_next;}
else
{ c->_next = b;b->_prev = c;c = b;b = b->_next;}
if ( a == RT1 )
{
c->_next =
b;b->_prev = c; //connect list b to the list made sofar
RT1->_prev = RT2->_prev;
RT1->_prev->_next = RT1;
break;
}
if ( b == RT2 )
{
c->_next = a;a->_prev = c; //connect list a to the list made sofar
break;
}
}
while ( true );
}
//=======================================================================
// implementation class DL_StackIter
//=======================================================================
/*! \class DL_StackIter
* template class DL_StackIter class for stack iterator on DL_List
* template stack iterator for any list/node type \n
* This class is the base class to attach/instantiate a stack iterator on a double linked list
* DL_List. The stack iterator is used to push and pop objects
* to and from the beginning of a list.
* class | Dtype | Object for traversing a DL_List of the same Dtype
*\par Example
How to work with a stack iterator for a list of type integer \n
to push a and b, pop a into list and remove_all directly using a stack iterator
*
*\code DL_List<int>* a_list = new DL_List<int>();# declaration and allocation
*
* int a=123;
*
* int b=345;
*
* {
*
* DL_StackIter<int>* a_listiter=new DL_StackIter<int>(a_list);
*
* a_listiter->push(a)
*
* a_listiter->push(b)
*
* a_listiter->pop()
*
* a_listiter->remove_all()
*
* } //to destruct the iterator before the list is deleted
*
* delete a_list; #delete it (must have no iterators attached to it)
*\endcode
*/
// constructor
template <class Dtype>
DL_StackIter<Dtype>::DL_StackIter( DL_List<Dtype> *newlist )
: DL_Iter<Dtype>( newlist ) // initialiseer BaseIter
{}
// destructor
template <class Dtype>
DL_StackIter<Dtype>::~DL_StackIter()
{}
// plaats nieuw item op stack
template <class Dtype>
void DL_StackIter<Dtype>::push( Dtype newitem )
{
DL_Iter<Dtype>::insbegin( newitem );
}
// remove current item
template <class Dtype>
void DL_StackIter<Dtype>::remove_all()
{
DL_Iter<Dtype>::remove_all();
}
// is stack leeg?
template <class Dtype>
bool DL_StackIter<Dtype>::empty()
{
return DL_Iter<Dtype>::empty();
}
// aantal items op stack
template <class Dtype>
int DL_StackIter<Dtype>::count()
{
return DL_Iter<Dtype>::count();
}
// haal bovenste item van stack
template <class Dtype>
Dtype DL_StackIter<Dtype>::pop()
{
if( DL_Iter<Dtype>::empty() )
this->Error( "pop()", EMPTY );
DL_Iter<Dtype>::tohead();
Dtype temp = DL_Iter<Dtype>::item();
DL_Iter<Dtype>::removehead();
return temp;
}
//=======================================================================
// implementation class DL_SortIter
//=======================================================================
/*! \class DL_SortIter
* template class DL_SortIter
* class for sort iterator on DL_List
* template sort iterator for any list/node type
* This class is a derived class to attach/instantiate a sorted iterator on a double linked list
* DL_List. The iterator is used to insert items in sorted order into a list.
//!tcarg: class | Dtype | Object for traversing a DL_List of the same Dtype
*/
// constructor
template <class DType>
DL_SortIter<DType>::DL_SortIter( DL_List<DType>* nw_list, int ( *new_func )( DType , DType ) )
: DL_Iter<DType>( nw_list ), comparef( new_func )
{}
// destructor
template <class DType>
DL_SortIter<DType>::~DL_SortIter()
{}
// general function to insert item
template <class DType>
void DL_SortIter<DType>::insert( DType new_item )
{
DL_Node<DType>* cursor = this->_current; //can be 0 if empty //node is a temporary cursor
// if list is empty directly insert
if ( DL_Iter<DType>::empty() )
{
DL_Iter<DType>::insend( new_item );
}
else
{
// put new item left of item
DL_Iter<DType>::tohead();
while( !DL_Iter<DType>::hitroot() )
{
if ( !( *comparef )( DL_Iter<DType>::item(), new_item ) )
break;
DL_Iter<DType>::next();
}
//if at root
DL_Iter<DType>::insbefore( new_item );
}
this->_current = cursor; //set to old cursor position
}
template <class DType>
void DL_SortIter<DType>::sortitererror()
{
this->Error( "sortiter()", NOT_ALLOW );
}
/*! \file _dl_itr.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: _dl_itr.h,v 1.6 2009/09/10 17:04:09 titato Exp $
*/
//! author="Klaas Holwerda"
/*
* Definitions of classes, for list implementation
* template list and iterator for any list node type
*/
#ifndef _DL_Iter_H
#define _DL_Iter_H
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_NO_DEPRECATE 1
#include "kbool/booleng.h"
#include <stdlib.h>
#include <string>
using namespace std;
#ifndef _STATUS_ENUM
#define _STATUS_ENUM
//!<enum Error codes for List and iterator class
enum Lerror {
NO_MES, /*!<No Message will be generated */
NO_LIST, /*!<List is not attached to the iterator*/
NO_LIST_OTHER, /*!<no attached list on other iter*/
AC_ITER_LIST_OTHER, /*!<iter not allowed on other list */
SAME_LIST, /*!<same list not allowed*/
NOT_SAME_LIST, /*!<must be same list*/
ITER_GT_1, /*!<more then one iteriter at root*/
ITER_GT_0, /*!<iter not allowed*/
ITER_HITROOT, /*!<iter at root*/
NO_ITEM, /*!<no item at current*/
NO_NEXT, /*!<no next after current*/
NO_PREV, /*!<no prev before current */
EMPTY, /*!<list is empty*/
NOT_ALLOW, /*!<not allowed*/
ITER_NEG /*!<to much iters deleted*/
};
#endif
#define SWAP(x,y,t)((t)=(x),(x)=(y),(y)=(t))
#define RT _list->_root
#define HD _list->_root->_next
#define TL _list->_root->_prev
#define NB _list->_nbitems
template <class Dtype> class DL_List;
template <class Dtype> class DL_Iter;
template <class Dtype> class DL_SortIter;
//! Template class DL_Node
template <class Dtype> class DL_Node
{
friend class DL_List<Dtype>;
friend class DL_Iter<Dtype>;
friend class DL_SortIter<Dtype>;
//!Public members
public:
//!Template constructor no contents
//!Construct a node for a list object
DL_Node();
//!constructor with init of Dtype
DL_Node( Dtype n );
//!Destructor
~DL_Node();
//!Public members
public:
//!data in node
Dtype _item;
//!pointer to next node
DL_Node* _next;
//!pointer to previous node
DL_Node* _prev;
};
//!Template class DL_List
template <class Dtype> class DL_List
{
friend class DL_Iter<Dtype>;
friend class DL_SortIter<Dtype>;
public:
//!Constructor
//!Construct a list object
//!!tcarg class | Dtype | list object
DL_List();
//!destructor
~DL_List();
//!Report off List Errors
void Error( string function, Lerror a_error );
//!Number of items in the list
int count();
//!Empty List?
bool empty();
//!insert the object given at the end of the list, after tail
DL_Node<Dtype>* insend( Dtype n );
//!insert the object given at the begin of the list, before head
DL_Node<Dtype>* insbegin( Dtype n );
//!remove the object at the begin of the list (head)
void removehead();
//! remove the object at the end of the list (tail)
void removetail();
//!remove all objects from the list
void remove_all( bool deleteObject = false );
//!Get the item at the head of the list
Dtype headitem();
//!Get the item at the tail of the list
Dtype tailitem();
//! to move all objects in a list to this list.
void takeover( DL_List<Dtype>* otherlist );
public:
//!the root node pointer of the list, the first and last node
//! in the list are connected to the root node. The root node is used
//! to detect the end / beginning of the list while traversing it.
DL_Node<Dtype>* _root;
//!the number of items in the list, if empty list it is 0
int _nbitems;
//!number of iterators on the list, Attaching or instantiating an iterator to list,
//! will increment this member, detaching and
//! destruction of iterator for a list will decrement this number
short int _iterlevel;
};
//! Template class DL_Iter for iterator on DL_List
template <class Dtype>
class DL_Iter
{
public:
//!Construct an iterator object for a given list of type Dtype
DL_Iter( DL_List<Dtype>* newlist );
//!Constructor of iterator for the same list as another iterator
DL_Iter( DL_Iter* otheriter );
//!Constructor without an attached list
DL_Iter();
//!destructor
~DL_Iter();
//!Report off Iterator Errors
void Error( string function, Lerror a_error );
//!This attaches an iterator to a list of a given type.
void Attach( DL_List<Dtype>* newlist );
//!This detaches an iterator from a list
void Detach();
//!execute given function for each item in the list/iterator
void foreach_f( void ( *fp ) ( Dtype n ) );
//! list mutations
//!insert after tail item
DL_Node<Dtype>* insend( Dtype n );
//!insert before head item
DL_Node<Dtype>* insbegin( Dtype n );
//!insert before current iterator position
DL_Node<Dtype>* insbefore( Dtype n );
//!insert after current iterator position
DL_Node<Dtype>* insafter( Dtype n );
//!to move all objects in a list to the list of the iterator.
void takeover( DL_List<Dtype>* otherlist );
//!to move all objects in a list (using iterator of that list) to the list of the iterator
void takeover( DL_Iter* otheriter );
//! to move maxcount objects in a list (using iterator of that list) to the list of the iterator
void takeover( DL_Iter* otheriter, int maxcount );
//!remove object at current iterator position from the list.
void remove();
//!Remove head item
void removehead();
//!Remove tail item
void removetail();
//!Remove all items
void remove_all();
/* void foreach_mf(void (Dtype::*mfp)() ); //call Dtype::mfp for each item */
//!is list empty (contains items or not)?
bool empty();
//!is iterator at root node (begin or end)?
bool hitroot();
//!is iterator at head/first node?
bool athead();
//!is iterator at tail/last node?
bool attail();
//!is given item member of the list
bool has( Dtype otheritem );
//!Number of items in the list
int count();
/* cursor movements */
//!go to last item, if list is empty goto hite
void totail();
//!go to first item, if list is empty goto hite
void tohead();
//!set the iterator position to the root (empty dummy) object in the list.
void toroot();
//! set the iterator position to next object in the list ( can be the root also).
void operator++ ( void );
//!set iterator to next item (pre fix)
void operator++ ( int );
//!set the iterator position to previous object in the list ( can be the root also)(postfix).
void operator-- ( void );
//!set the iterator position to previous object in the list ( can be the root also)(pre fix).
void operator-- ( int );
//!set the iterator position n objects in the next direction ( can be the root also).
void operator>> ( int );
//!set the iterator position n objects in the previous direction ( can be the root also).
void operator<< ( int );
//!set the iterator position to next object in the list, if this would be the root object,
//!then set the iterator at the head object
void next_wrap();
//!set the iterator position to previous object in the list, if this would be the root object,
//!then set the iterator at the tail object
void prev_wrap();
//!move root in order to make the current node the tail
void reset_tail();
//!move root in order to make the current node the head
void reset_head();
//!put the iterator at the position of the given object in the list.
bool toitem( Dtype );
//!put the iterator at the same position as the given iterator in the list.
void toiter( DL_Iter* otheriter );
//!put the iterator at the position of the given node in the list.
bool tonode( DL_Node<Dtype>* );
//!iterate through all items of the list
bool iterate( void );
//!To get the item at the current iterator position
Dtype item();
//! get node at iterator
DL_Node<Dtype>* node();
//!sort list with mergesort
void mergesort( int ( *fcmp ) ( Dtype, Dtype ) );
//!sort list with cocktailsort
/*!
\return number of swaps done.
*/
int cocktailsort( int ( * )( Dtype, Dtype ), bool ( * )( Dtype, Dtype ) = NULL );
protected:
//!sort list with mergesort
void mergesort_rec( int ( *fcmp )( Dtype, Dtype ), DL_Node<Dtype> *RT1, int n );
//!sort list with mergesort
void mergetwo( int ( *fcmp )( Dtype, Dtype ), DL_Node<Dtype> *RT1, DL_Node<Dtype> *RT2 );
//!set the iterator position to next object in the list ( can be the root also).
void next();
//!set the iterator position to previous object in the list ( can be the root also).
void prev();
//!the list for this iterator
DL_List<Dtype> *_list;
//!the current position of the iterator
DL_Node<Dtype> *_current;
};
//! template class DL_StackIter class for stack iterator on DL_List
template <class Dtype>
class DL_StackIter : protected DL_Iter<Dtype>
{
public:
//!Constructor of stack iterator for given list
DL_StackIter( DL_List<Dtype> * );
//!Constructor of stack iterator no list attached
DL_StackIter();
//!Destructor of stack iterator
~DL_StackIter();
//!Remove all items from the stack
void remove_all();
//!push given item on the stack
void push( Dtype n );
//!get last inserted item from stack
Dtype pop();
//!is stack empty?
bool empty();
//!number of items on the stack
int count();
};
//!template class DL_SortIter
template <class DType> class DL_SortIter : public DL_Iter<DType>
{
public:
//!Constructor of sort iterator for given list and sort function
DL_SortIter( DL_List<DType>* nw_list, int ( *new_func )( DType , DType ) );
//!Constructor of sort iterator with sort function and no list attached
DL_SortIter( int ( *newfunc )( DType, DType ) );
//!Destructor of sort iterator
~DL_SortIter();
//!insert item in sorted order
void insert ( DType new_item );
/*override following functions to give an error */
//!Not allowed
void insend ( bool n ){sortitererror();};
//!Not allowed
void insbegin ( bool n ){sortitererror();};
//!Not allowed
void insbefore ( bool n ){sortitererror();};
//!Not allowed
void insafter ( bool n ){sortitererror();};
//!Not allowed
void takeover ( DL_List<DType>* ){sortitererror();};
//!Not allowed
void takeover ( DL_Iter<DType>* ){sortitererror();};
//!Not allowed
void takeover ( DL_Iter<DType>* otheriter, int maxcount ){sortitererror();};
//!Not allowed
void next_wrap() {sortitererror();};
//!Not allowed
void prev_wrap() {sortitererror();};
//!Not allowed
void reset_tail() {sortitererror();};
//!Not allowed
void reset_head() {sortitererror();};
private:
//!Report off Iterator Errors
void sortitererror();
//!comparefunction used to insert items in sorted order
int ( *comparef )( DType, DType );
};
#include "kbool/_dl_itr.cpp"
#endif
/*! \file _lnk_itr.cpp
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: _lnk_itr.cpp,v 1.4 2009/02/06 21:33:03 titato Exp $
*/
#ifdef __UNIX__
#include "kbool/_lnk_itr.h"
#endif
//=======================================================================
// implementation class LinkBaseIter
//=======================================================================
template<class Type>
TDLI<Type>::TDLI( DL_List<void*>* newlist ): DL_Iter<void*>( newlist )
{}
template<class Type>
TDLI<Type>::TDLI( DL_Iter<void*>* otheriter ): DL_Iter<void*>( otheriter )
{}
template<class Type>
TDLI<Type>::TDLI(): DL_Iter<void*>()
{}
// destructor TDLI
template<class Type>
TDLI<Type>::~TDLI()
{}
template<class Type>
void TDLI<Type>::delete_all()
{
DL_Node<void*>* node;
Type* obj;
for ( int i = 0; i < NB; i++ )
{
node = HD;
HD = node->_next;
obj = ( Type* )( node->_item );
delete obj;
delete node;
}
NB = 0; //reset memory used (no lost pointers)
TL = RT;
_current = RT;
}
template<class Type>
void TDLI<Type>::foreach_f( void ( *fp ) ( Type* item ) )
{
DL_Iter<void*>::foreach_f( ( void ( * )( void* ) )fp ); //call fp for each item
}
template<class Type>
void TDLI<Type>::foreach_mf( void ( Type::*mfp ) () )
{
DL_Node<void*>* node = HD; //can be 0 if empty
Type* obj;
for( int i = 0; i < NB; i++ )
{
obj = ( Type* )( node->_item );
( obj->*mfp )();
node = node->_next;
}
}
template<class Type>
void TDLI<Type>::takeover( DL_List<void*>* otherlist )
{
DL_Iter<void*>::takeover( ( DL_List<void*>* ) otherlist );
}
template<class Type>
void TDLI<Type>::takeover( TDLI* otheriter )
{
DL_Iter<void*>::takeover( ( DL_Iter<void*>* ) otheriter );
}
template<class Type>
void TDLI<Type>::takeover( TDLI* otheriter, int maxcount )
{
DL_Iter<void*>::takeover( ( DL_Iter<void*>* ) otheriter, maxcount );
}
// is item element of the list?
template<class Type>
bool TDLI<Type>::has( Type* otheritem )
{
return DL_Iter<void*>::has( ( void* ) otheritem );
}
// goto to item
template<class Type>
bool TDLI<Type>::toitem( Type* item )
{
return DL_Iter<void*>::toitem( ( void* ) item );
}
// get current item
template<class Type>
Type* TDLI<Type>::item()
{
return ( Type* ) DL_Iter<void*>::item();
}
template<class Type>
void TDLI<Type>::insend( Type* newitem )
{
DL_Iter<void*>::insend( ( void* ) newitem );
}
template<class Type>
void TDLI<Type>::insbegin( Type* newitem )
{
DL_Iter<void*>::insbegin( ( void* ) newitem );
}
template<class Type>
void TDLI<Type>::insbefore( Type* newitem )
{
DL_Iter<void*>::insbefore( ( void* ) newitem );
}
template<class Type>
void TDLI<Type>::insafter( Type* newitem )
{
DL_Iter<void*>::insafter( ( void* ) newitem );
}
template<class Type>
void TDLI<Type>::insend_unsave( Type* newitem )
{
short int iterbackup = _list->_iterlevel;
_list->_iterlevel = 0;
DL_Iter<void*>::insend( ( void* ) newitem );
_list->_iterlevel = iterbackup;
}
template<class Type>
void TDLI<Type>::insbegin_unsave( Type* newitem )
{
short int iterbackup = _list->_iterlevel;
_list->_iterlevel = 0;
DL_Iter<void*>::insbegin( ( void* ) newitem );
_list->_iterlevel = iterbackup;
}
template<class Type>
void TDLI<Type>::insbefore_unsave( Type* newitem )
{
short int iterbackup = _list->_iterlevel;
_list->_iterlevel = 0;
DL_Iter<void*>::insbefore( ( void* ) newitem );
_list->_iterlevel = iterbackup;
}
template<class Type>
void TDLI<Type>::insafter_unsave( Type* newitem )
{
short int iterbackup = _list->_iterlevel;
_list->_iterlevel = 0;
DL_Iter<void*>::insafter( ( void* ) newitem );
_list->_iterlevel = iterbackup;
}
template<class Type>
void TDLI<Type>::mergesort( int ( *f )( Type* a, Type* b ) )
{
DL_Iter<void*>::mergesort( ( int ( * )( void*, void* ) ) f );
}
template<class Type>
int TDLI<Type>::cocktailsort( int ( *f )( Type* a, Type* b ), bool ( *f2 )( Type* c, Type* d ) )
{
return DL_Iter<void*>::cocktailsort( ( int ( * )( void*, void* ) ) f, ( bool( * )( void*, void* ) ) f2 );
}
template<class Type>
TDLISort<Type>::TDLISort( DL_List<void*>* lista, int ( *newfunc )( void*, void* ) )
: DL_SortIter<void*>( lista, newfunc )
{}
template<class Type>
TDLISort<Type>::~TDLISort()
{}
template<class Type>
void TDLISort<Type>::delete_all()
{
DL_Node<void*>* node;
Type* obj;
for ( int i = 0; i < NB; i++ )
{
node = HD;
HD = node->_next;
obj = ( Type* )( node->_item );
delete obj;
delete node;
}
NB = 0; //reset memory used (no lost pointers)
TL = RT;
_current = RT;
}
// is item element of the list?
template<class Type>
bool TDLISort<Type>::has( Type* otheritem )
{
return DL_Iter<void*>::has( ( void* ) otheritem );
}
// goto to item
template<class Type>
bool TDLISort<Type>::toitem( Type* item )
{
return DL_Iter<void*>::toitem( ( void* ) item );
}
// get current item
template<class Type>
Type* TDLISort<Type>::item()
{
return ( Type* ) DL_Iter<void*>::item();
}
template<class Type>
TDLIStack<Type>::TDLIStack( DL_List<void*>* newlist ): DL_StackIter<void*>( newlist )
{}
// destructor TDLI
template<class Type>
TDLIStack<Type>::~TDLIStack()
{}
// plaats nieuw item op stack
template<class Type>
void TDLIStack<Type>::push( Type* newitem )
{
DL_StackIter<void*>::push( ( Type* ) newitem );
}
// haal bovenste item van stack
template<class Type>
Type* TDLIStack<Type>::pop()
{
return ( Type* ) DL_StackIter<void*>::pop();
}
/*! \file _lnk_itr.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: _lnk_itr.h,v 1.4 2009/09/10 17:04:09 titato Exp $
*/
//! author="Klaas Holwerda"
//! version="1.0"
/*
* Definitions of classes, for list implementation
* template list and iterator for any list node type
*/
#ifndef _LinkBaseIter_H
#define _LinkBaseIter_H
//! headerfiles="_dl_itr.h stdlib.h misc.h gdsmes.h"
#include <stdlib.h>
#include "kbool/booleng.h"
#define SWAP(x,y,t)((t)=(x),(x)=(y),(y)=(t))
#include "kbool/_dl_itr.h"
//! codefiles="_dl_itr.cpp"
//! Template class TDLI
/*!
class for iterator on DL_List<void*> that is type casted version of DL_Iter
\sa DL_Iter for further documentation
*/
template<class Type> class TDLI : public DL_Iter<void*>
{
public:
//!constructor
/*!
\param list to iterate on.
*/
TDLI( DL_List<void*>* list );
//!constructor
TDLI( DL_Iter<void*>* otheriter );
//! nolist constructor
TDLI();
//! destructor
~TDLI();
//!call fp for each item
void foreach_f( void ( *fp ) ( Type* item ) );
//!call fp for each item
void foreach_mf( void ( Type::*fp ) () );
/* list mutations */
//! delete all items
void delete_all ();
//! insert at end
void insend ( Type* n );
//! insert at begin
void insbegin ( Type* n );
//! insert before current
void insbefore ( Type* n );
//! insert after current
void insafter ( Type* n );
//! insert at end unsave (works even if more then one iterator is on the list
//! the user must be sure not to delete/remove items where other iterators
//! are pointing to.
void insend_unsave ( Type* n );
//! insert at begin unsave (works even if more then one iterator is on the list
//! the user must be sure not to delete/remove items where other iterators
//! are pointing to.
void insbegin_unsave ( Type* n );
//! insert before iterator position unsave (works even if more then one iterator is on the list
//! the user must be sure not to delete/remove items where other iterators
//! are pointing to.
void insbefore_unsave ( Type* n );
//! insert after iterator position unsave (works even if more then one iterator is on the list
//! the user must be sure not to delete/remove items where other iterators
//! are pointing to.
void insafter_unsave ( Type* n );
//! \sa DL_Iter::takeover(DL_List< Dtype >* otherlist )
void takeover ( DL_List<void*>* otherlist );
//! \sa DL_Iter::takeover(DL_Iter* otheriter)
void takeover ( TDLI* otheriter );
//! \sa DL_Iter::takeover(DL_Iter* otheriter, int maxcount)
void takeover ( TDLI* otheriter, int maxcount );
//! \sa DL_Iter::has
bool has ( Type* );
//! \sa DL_Iter::toitem
bool toitem ( Type* );
//!get the item then iterator is pointing at
Type* item ();
//! \sa DL_Iter::mergesort
void mergesort ( int ( *f )( Type* a, Type* b ) );
//! \sa DL_Iter::cocktailsort
int cocktailsort( int ( * ) ( Type* a, Type* b ), bool ( * ) ( Type* c, Type* d ) = NULL );
};
//! Template class TDLIsort
/*!
// class for sort iterator on DL_List<void*> that is type casted version of DL_SortIter
// see also inhereted class DL_SortIter for further documentation
*/
template<class Type> class TDLISort : public DL_SortIter<void*>
{
public:
//!constructor givin a list and a sort function
TDLISort( DL_List<void*>* list, int ( *newfunc )( void*, void* ) );
~TDLISort();
//!delete all items from the list
void delete_all();
bool has ( Type* );
bool toitem ( Type* );
Type* item ();
};
//! Template class TDLIStack
/*!
class for iterator on DL_List<void*> that is type casted version of DL_StackIter
see also inhereted class DL_StackIter for further documentation
*/
template<class Type> class TDLIStack : public DL_StackIter<void*>
{
public:
//constructor givin a list
TDLIStack( DL_List<void*>* list );
~TDLIStack();
void push( Type* );
Type* pop();
};
#include"kbool/_lnk_itr.cpp"
#endif
/*! \file booleng.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: booleng.h,v 1.9 2009/09/14 18:18:03 titato Exp $
*/
#ifndef BOOLENG_H
#define BOOLENG_H
#undef _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_NO_DEPRECATE 1
#include <stdio.h>
#include <limits.h>
#include <assert.h>
#include <math.h>
#include <string>
using namespace std;
#if 0 // Kicad does not use kbool in dll version
#if defined(__WXMSW__)
/*
__declspec works in BC++ 5 and later, Watcom C++ 11.0 and later as well
as VC++ and gcc
*/
# if defined(__VISUALC__) || defined(__BORLANDC__) || defined(__GNUC__) || defined(__WATCOMC__)
# define WXEXPORT __declspec(dllexport)
# define WXIMPORT __declspec(dllimport)
# else /* compiler doesn't support __declspec() */
# define WXEXPORT
# define WXIMPORT
# endif
#elif defined(__WXPM__)
# if defined (__WATCOMC__)
# define WXEXPORT __declspec(dllexport)
/*
__declspec(dllimport) prepends __imp to imported symbols. We do NOT
want that!
*/
# define WXIMPORT
# elif defined(__EMX__)
# define WXEXPORT
# define WXIMPORT
# elif (!(defined(__VISAGECPP__) && (__IBMCPP__ < 400 || __IBMC__ < 400 )))
# define WXEXPORT _Export
# define WXIMPORT _Export
# endif
#elif defined(__WXMAC__) || defined(__WXCOCOA__)
# ifdef __MWERKS__
# define WXEXPORT __declspec(export)
# define WXIMPORT __declspec(import)
# endif
#elif defined(__CYGWIN__)
# define WXEXPORT __declspec(dllexport)
# define WXIMPORT __declspec(dllimport)
#endif
#endif // if 0 for kicad
/* for other platforms/compilers we don't anything */
#ifndef WXEXPORT
# define WXEXPORT
# define WXIMPORT
#endif
#ifdef A2DKBOOLMAKINGDLL
#define A2DKBOOLDLLEXP WXEXPORT
#define A2DKBOOLDLLEXP_DATA(type) WXEXPORT type
#define A2DKBOOLDLLEXP_CTORFN
#elif defined(WXART2D_USINGDLL)
#define A2DKBOOLDLLEXP WXIMPORT
#define A2DKBOOLDLLEXP_DATA(type) WXIMPORT type
#define A2DKBOOLDLLEXP_CTORFN
#else // not making nor using DLL
#define A2DKBOOLDLLEXP
#define A2DKBOOLDLLEXP_DATA(type) type
#define A2DKBOOLDLLEXP_CTORFN
#endif
#define KBOOL_VERSION "2.1"
#define KBOOL_DEBUG 0
#define KBOOL_LOG 0
#define KBOOL_INT64 1
class kbLink;
#define LINELENGTH 200
#ifdef MAXDOUBLE
#undef MAXDOUBLE
#endif
#define MAXDOUBLE 1.7976931348623158e+308
#ifdef KBOOL_INT64
#if defined(__UNIX__) || defined(__GNUG__)
typedef long long B_INT; // 8 bytes integer
//#define MAXB_INT LONG_LONG_MAX
//#define MINB_INT LONG_LONG_MIN // 8 bytes integer
const B_INT MAXB_INT = ( 0x7fffffffffffffffLL ); // 8 bytes integer
const B_INT MINB_INT = ( 0x8000000000000000LL );
#else //defined(__UNIX__) || defined(__GNUG__)
typedef __int64 B_INT; // 8 bytes integer
#undef MAXB_INT
#undef MINB_INT
const B_INT MAXB_INT = ( 0x7fffffffffffffff ); // 8 bytes integer
const B_INT MINB_INT = ( 0x8000000000000000 );
#endif //defined(__UNIX__) || defined(__GNUG__)
#else //KBOOL_INT64
#if defined(__UNIX__) || defined(__GNUG__)
typedef long B_INT; // 8 bytes integer
const B_INT MAXB_INT = ( 0x7fffffffL ); // 8 bytes integer
const B_INT MINB_INT = ( 0x80000000L );
#else
typedef long B_INT; // 8 bytes integer
const B_INT MAXB_INT = ( 0x7fffffff ); // 8 bytes integer
const B_INT MINB_INT = ( 0x80000000 );
#endif
#endif //KBOOL_INT64
B_INT babs( B_INT );
#ifdef M_PI
#undef M_PI
#endif
#define M_PI (3.1415926535897932384626433832795028841972)
#ifdef M_PI_2
#undef M_PI_2
#endif
#define M_PI_2 1.57079632679489661923
#ifdef M_PI_4
#undef M_PI_4
#endif
#define M_PI_4 0.785398163397448309616
#ifndef NULL
#define NULL 0
#endif
B_INT bmin( B_INT const value1, B_INT const value2 );
B_INT bmax( B_INT const value1, B_INT const value2 );
B_INT bmin( B_INT value1, B_INT value2 );
B_INT bmax( B_INT value1, B_INT value2 );
#include <string.h>
//! errors in the boolean algorithm will be thrown using this class
class A2DKBOOLDLLEXP Bool_Engine_Error
{
public:
Bool_Engine_Error( string message, string header = 0, int degree = 9, int fatal = 0 );
Bool_Engine_Error( const Bool_Engine_Error& a );
~Bool_Engine_Error();
string GetErrorMessage();
string GetHeaderMessage();
int GetErrorDegree();
int GetFatal();
protected:
string _message;
string _header;
int _degree;
int _fatal;
};
#define KBOOL_LOGFILE "kbool.log"
enum kbEdgeType
{
KB_OUTSIDE_EDGE, /*!< edge of the outside contour of a polygon */
KB_INSIDE_EDGE, /*!< edge of the inside hole a polygon */
KB_FALSE_EDGE /*!< edge to connect holes into polygons */
} ;
enum GroupType
{
GROUP_A, /*!< to set Group A for polygons */
GROUP_B /*!< to set Group A for polygons */
};
enum BOOL_OP
{
BOOL_NON, /*!< No operation */
BOOL_OR, /*!< boolean OR operation */
BOOL_AND, /*!< boolean AND operation */
BOOL_EXOR, /*!< boolean EX_OR operation */
BOOL_A_SUB_B, /*!< boolean Group A - Group B operation */
BOOL_B_SUB_A, /*!< boolean Group B - Group A operation */
BOOL_CORRECTION, /*!< polygon correction/offset operation */
BOOL_SMOOTHEN, /*!< smooth operation */
BOOL_MAKERING /*!< create a ring on all polygons */
};
class kbGraphList;
class kbGraph;
class kbLink;
class kbNode;
template<class Type> class TDLI;
//! boolean engine to perform operation on two sets of polygons.
/*
First the engine needs to be filled with polygons.
The first operand in the operation is called group A polygons, the second group B.
The boolean operation ( BOOL_OR, BOOL_AND, BOOL_EXOR, BOOL_A_SUB_B, BOOL_B_SUB_A )
are based on the two sets of polygons in group A and B.
The other operation on group A only.
At the end of the operation the resulting polygons can be extracted.
*/
class A2DKBOOLDLLEXP Bool_Engine
{
public:
//! constructor
Bool_Engine();
//! destructor
virtual ~Bool_Engine();
string GetVersion() { return KBOOL_VERSION; }
//! reports progress of algorithm.
virtual void SetState( string );
//! called at an internal error.
virtual void error( string text, string title );
//! called at an internal generated possible error.
virtual void info( string text, string title );
bool Do_Operation( BOOL_OP operation );
//! distance within which points and lines will be snapped towards lines and other points
/*
The algorithm takes into account gaps and inaccuracies caused by rounding to integer coordinates
in the original data.
Imagine two rectangles one with a side ( 0,0 ) ( 2.0, 17.0 )
and the other has a side ( 0,0 ) ( 1.0, 8.5 )
If for some reason those coordinates where round to ( 0,0 ) ( 2, 17 ) ( 0,0 ) ( 1, 9 ),
there will be clearly a gap or overlap that was not intended.
Even without rounding this effect takes place since there is always a minimum significant bit
also when using doubles.
If the user used as minimum accuracy 0.001, you need to choose Marge > 0.001
The boolean engine scales up the input data with GetDGrid() * GetGrid() and rounds the result to
integer, So (assuming GRID = 100 DGRID = 1000) a vertex of 123.001 in the user data will
become 12300100 internal.
At the end of the algorithm the internal vertexes are scaled down again with GetDGrid() * GetGrid(),
so 12300103 becomes 123.00103 eventually.
So indeed the minimum accuracy might increase, you are free to round again if needed.
*/
void SetMarge( double marge );
double GetMarge();
//! input points are scaled up with GetDGrid() * GetGrid()
/*
Grid makes sure that the integer data used within the algorithm has room for extra intersections
smaller than the smallest number within the input data.
The input data scaled up with DGrid is related to the accuracy the user has in his input data.
Another scaling with Grid is applied on top of it to create space in the integer number for
even smaller numbers.
*/
void SetGrid( B_INT grid );
//! See SetGrid
B_INT GetGrid();
//! input points are scaled up with GetDGrid() * GetGrid()
/*
The input data scaled up with DGrid is related to the accuracy the user has in his input data.
User data with a minimum accuracy of 0.001, means set the DGrid to 1000.
The input data may contain data with a minimum accuracy much smaller, but by setting the DGrid
everything smaller than 1/DGrid is rounded.
DGRID is only meant to make fractional parts of input data which can be
doubles, part of the integers used in vertexes within the boolean algorithm.
And therefore DGRID bigger than 1 is not usefull, you would only loose accuracy.
Within the algorithm all input data is multiplied with DGRID, and the result
is rounded to an integer.
*/
void SetDGrid( double dgrid );
//! See SetDGrid
double GetDGrid();
//! When doing a correction operation ( also known as process offset )
//! this defines the detail in the rounded corners.
/*
Depending on the round factor the corners of the polygon may be rounding within the correction
algorithm. The detail within this rounded corner is set here.
It defines the deviation the generated segments in arc like polygon may have towards the ideal
rounded corner using a perfect arc.
*/
void SetCorrectionAber( double aber );
//! see SetCorrectionAber
double GetCorrectionAber();
//! When doing a correction operation ( also known as process offset )
//! this defines the amount of correction.
/*
The correction algorithm can apply positive and negative offset to polygons.
It takes into account closed in areas within a polygon, caused by overlapping/selfintersecting
polygons. So holes form that way are corrected proberly, but the overlapping parts itself
are left alone. An often used trick to present polygons with holes by linking to the outside
boundary, is therefore also handled properly.
The algoritm first does a boolean OR operation on the polygon, and seperates holes and
outside contours.
After this it creates a ring shapes on the above holes and outside contours.
This ring shape is added or subtracted from the holes and outside contours.
The result is the corrected polygon.
If the correction factor is > 0, the outside contours will become larger, while the hole contours
will become smaller.
*/
void SetCorrectionFactor( double aber );
//! see SetCorrectionFactor
double GetCorrectionFactor();
//! used within the smooth algorithm to define how much the smoothed curve may deviate
//! from the original.
void SetSmoothAber( double aber );
//! see SetSmoothAber
double GetSmoothAber();
//! segments of this size will be left alone in the smooth algorithm.
void SetMaxlinemerge( double maxline );
//! see SetMaxlinemerge
double GetMaxlinemerge();
//! Polygon may be filled in different ways (alternate and winding rule).
//! This here defines which method will be assumed within the algorithm.
void SetWindingRule( bool rule );
//! see SetWindingRule
bool GetWindingRule();
//! when set not only the top vertex of a hole is linked to the other holes and contours,
//! but also vertex other vertexes close to a hole can be used.
void SetAllowNonTopHoleLinking( bool allow ) { m_allowNonTopHoleLinking = allow; }
//! see SetWindingRule
bool GetAllowNonTopHoleLinking() { return m_allowNonTopHoleLinking; }
//! the smallest accuracy used within the algorithm for comparing two real numbers.
double GetAccur();
//! Used with in correction/offset algorithm.
/*
When the polygon contains sharp angles ( < 90 ), after a positive correction the
extended parrallel constructed offset lines may leed to extreme offsets on the angles.
The length of the crossing generated by the parrallel constructed offset lines
towards the original point in the polygon is compared to the offset which needs to be applied.
The Roundfactor then decides if this corner will be rounded.
A Roundfactor of 1 means that the resulting offset will not be bigger then the correction factor
set in the algorithm. Meaning even straight 90 degrees corners will be rounded.
A Roundfactor of > sqrt(2) is where 90 corners will be left alone, and smaller corners will be rounded.
*/
void SetRoundfactor( double roundfac );
//! see SetRoundfactor
double GetRoundfactor();
// the following are only be used within the algorithm,
// since they are scaled with m_DGRID
//! only used internal.
void SetInternalMarge( B_INT marge );
//! only used internal.
B_INT GetInternalMarge();
//! only used internal.
double GetInternalCorrectionAber();
//! only used internal.
double GetInternalCorrectionFactor();
//! only used internal.
double GetInternalSmoothAber();
//! only used internal.
B_INT GetInternalMaxlinemerge();
//! in this mode polygons add clockwise, or contours,
/*!
and polygons added counter clockwise or holes.
*/
void SetOrientationEntryMode( bool orientationEntryMode ) { m_orientationEntryMode = orientationEntryMode; }
//! see SetOrientationEntryMode()
bool GetOrientationEntryMode() { return m_orientationEntryMode; }
//! if set true holes are linked into outer contours by double overlapping segments.
/*!
This mode is needed when the software using the boolean algorithm does
not understand hole polygons. In that case a contour and its holes form one
polygon. In cases where software understands the concept of holes, contours
are clockwise oriented, while holes are anticlockwise oriented.
The output of the boolean operations, is following those rules also.
But even if extracting the polygons from the engine, each segment is marked such
that holes and non holes and linksegments to holes can be recognized.
*/
void SetLinkHoles( bool doLinkHoles ) { m_doLinkHoles = doLinkHoles; }
//! see SetLinkHoles()
bool GetLinkHoles() { return m_doLinkHoles; }
//!lof file will be created when set True
void SetLog( bool OnOff );
//! used to write to log file
void Write_Log( string);
//! used to write to log file
void Write_Log( string, string );
//! used to write to log file
void Write_Log( string, double );
//! used to write to log file
void Write_Log( string, B_INT );
FILE* GetLogFile() { return m_logfile; }
// methods used to add polygons to the eng using points
//! Start adding a polygon to the engine
/*
The boolean operation work on two groups of polygons ( group A or B ),
other algorithms are only using group A.
You add polygons like this to the engine.
// foreach point in a polygon ...
if (booleng->StartPolygonAdd(GROUP_A))
{
booleng->AddPoint(100,100);
booleng->AddPoint(-100,100);
booleng->AddPoint(-100,-100);
booleng->AddPoint(100,-100);
}
booleng->EndPolygonAdd();
\param A_or_B defines if the new polygon will be of group A or B
Holes or added by adding an inside polygons with opposite orientation compared
to another polygon added.
So the contour polygon ClockWise, then add counterclockwise polygons for holes, and visa versa.
BUT only if m_orientationEntryMode is set true, else all polygons are redirected, and become
individual areas without holes.
Holes in such a case must be linked into the contour using two extra segments.
*/
bool StartPolygonAdd( GroupType A_or_B );
//! see StartPolygonAdd
bool AddPoint( double x, double y );
//! see StartPolygonAdd
bool EndPolygonAdd();
// methods used to extract polygons from the eng by getting its points
//! Use after StartPolygonGet()
int GetNumPointsInPolygon() { return m_numPtsInPolygon ; }
//! get resulting polygons at end of an operation
/*!
// foreach resultant polygon in the booleng ...
while ( booleng->StartPolygonGet() )
{
// foreach point in the polygon
while ( booleng->PolygonHasMorePoints() )
{
fprintf(stdout,"x = %f\t", booleng->GetPolygonXPoint());
fprintf(stdout,"y = %f\n", booleng->GetPolygonYPoint());
}
booleng->EndPolygonGet();
}
*/
bool StartPolygonGet();
//! see StartPolygonGet
/*!
This iterates through the first graph in the graphlist.
Setting the current kbNode properly by following the links in the graph
through its nodes.
*/
bool PolygonHasMorePoints();
//! see StartPolygonGet
double GetPolygonXPoint();
//! see StartPolygonGet
double GetPolygonYPoint();
//! in the resulting polygons this tells if the current polygon segment is one
//! used to link holes into the outer contour of the surrounding polygon
bool GetHoleConnectionSegment();
//! in the resulting polygons this tells if the current polygon segment is part
//! of a hole within a polygon.
bool GetHoleSegment();
//! an other way to get the type of segment.
kbEdgeType GetPolygonPointEdgeType();
//! see StartPolygonGet()
/*!
Removes a graph from the graphlist.
Called after an extraction of an output polygon was done.
*/
void EndPolygonGet();
private:
bool m_doLog;
//! contains polygons in graph form
kbGraphList* m_graphlist;
double m_MARGE;
B_INT m_GRID;
double m_DGRID;
double m_CORRECTIONABER;
double m_CORRECTIONFACTOR;
double m_SMOOTHABER;
double m_MAXLINEMERGE;
bool m_WINDINGRULE;
double m_ACCUR;
double m_ROUNDFACTOR;
bool m_orientationEntryMode;
bool m_doLinkHoles;
bool m_allowNonTopHoleLinking;
//! used in the StartPolygonAdd, AddPt, EndPolygonAdd sequence
kbGraph* m_GraphToAdd;
//! used in the StartPolygonAdd, AddPt, EndPolygonAdd sequence
kbNode* m_lastNodeToAdd;
//! used in the StartPolygonAdd, AddPt, EndPolygonAdd sequence
kbNode* m_firstNodeToAdd;
//! the current group type ( group A or B )
GroupType m_groupType;
//! used in extracting the points from the resultant polygons
kbGraph* m_getGraph;
//! used in extracting the points from the resultant polygons
kbLink* m_getLink;
//! used in extracting the points from the resultant polygons
kbNode* m_getNode;
//! used in extracting the points from the resultant polygons
double m_PolygonXPoint;
//! used in extracting the points from the resultant polygons
double m_PolygonYPoint;
//! used in extracting the points from the resultant polygons
int m_numPtsInPolygon;
//! used in extracting the points from the resultant polygons
int m_numNodesVisited;
FILE* m_logfile;
public:
//! use in kbNode to iterate links.
TDLI<kbLink>* _linkiter;
//! how many time run intersections fase.
unsigned int m_intersectionruns;
};
#endif
/*! \file graph.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: graph.h,v 1.5 2009/09/10 17:04:09 titato Exp $
*/
/* @@(#) $Source: /cvsroot/wxart2d/wxArt2D/thirdparty/kbool/include/kbool/graph.h,v $ $Revision: 1.5 $ $Date: 2009/09/10 17:04:09 $ */
/*
Program GRAPH.H
Purpose Used to Intercect and other process functions
Last Update 03-04-1996
*/
#ifndef GRAPH_H
#define GRAPH_H
#include "kbool/booleng.h"
#include "kbool/_lnk_itr.h"
#include "kbool/link.h"
#include "kbool/line.h"
#include "kbool/scanbeam.h"
class kbNode;
class kbGraphList;
//! one graph containing links that cab be connected.
class A2DKBOOLDLLEXP kbGraph
{
protected:
Bool_Engine* _GC;
public:
kbGraph( Bool_Engine* GC );
kbGraph( kbLink*, Bool_Engine* GC );
kbGraph( kbGraph* other );
~kbGraph();
bool GetBin() { return _bin; };
void SetBin( bool b ) { _bin = b; };
void Prepare( int intersectionruns );
void RoundInt( B_INT grid );
void Rotate( bool plus90 );
//! adds a link to the linklist
void AddLink( kbNode *begin, kbNode *end );
//! adds a link to the linklist
void AddLink( kbLink *a_link );
bool AreZeroLines( B_INT Marge );
//! Delete parallel lines
void DeleteDoubles();
//! delete zerolines
bool DeleteZeroLines( B_INT Marge );
bool RemoveNullLinks();
//! Process found intersections
void ProcessCrossings();
//! set flags for operations based on group
void Set_Operation_Flags();
//! Left Right values
void Remove_IN_Links();
//! reset bin and mark flags in links.
void ResetBinMark();
// Remove unused links
void ReverseAllLinks();
//! Simplify the kbGraph
bool Simplify( B_INT Marge );
//! Takes over all links of the argument
bool Smoothen( B_INT Marge );
void TakeOver( kbGraph* );
//! function for maximum performance
//! Get the First link from the kbGraph
kbLink* GetFirstLink();
kbNode* GetTopNode();
void SetBeenHere( bool );
void Reset_flags();
//! Set the group of a kbGraph
void SetGroup( GroupType );
//! Set the number of the kbGraph
void SetNumber( int );
void Reset_Mark_and_Bin();
bool GetBeenHere();
int GetGraphNum();
int GetNumberOfLinks();
void Boolean( BOOL_OP operation, kbGraphList* Result );
void Correction( kbGraphList* Result, double factor );
void MakeRing( kbGraphList* Result, double factor );
void CreateRing( kbGraphList *ring, double factor );
void CreateRing_fast( kbGraphList *ring, double factor );
void CreateArc( kbNode* center, kbLine* incoming, kbNode* end, double radius, double aber );
void CreateArc( kbNode* center, kbNode* begin, kbNode* end, double radius, bool clock, double aber );
void MakeOneDirection();
void Make_Rounded_Shape( kbLink* a_link, double factor );
bool MakeClockWise();
bool writegraph( bool linked );
bool writeintersections();
void WriteKEY( Bool_Engine* GC, FILE* file = NULL );
void WriteGraphKEY( Bool_Engine* GC );
protected:
//! Extracts partical polygons from the graph
/*
Links are sorted in XY at beginpoint. Bin and mark flag are reset.
Next start to collect subparts from the graph, setting the links bin for all found parts.
The parts are searched starting at a topleft corner NON set bin flag link.
Found parts are numbered, to be easily split into to real sperate graphs by Split()
\param operation operation to collect for.
\param detecthole if you want holes detected, influences also way of extraction.
\param foundholes when holes are found this flag is set true, but only if detecthole is set true.
*/
void Extract_Simples( BOOL_OP operation, bool detecthole, bool& foundholes );
//! split graph into small graph, using the numbers in links.
void Split( kbGraphList* partlist );
//! Collect a graph by starting at argument link
/*
Called from Extract_Simples, and assumes sorted links with bin flag unset for non extarted piece
Collect graphs pieces from a total graph, by following links set to a given boolean operation.
\param current_node start node to collect
\param operation operation to collect for.
\param detecthole if you want holes detected, influences also way of extraction.
\param graphnumber number to be given to links in the extracted graph piece
\param foundholes when holes are found this flag is set true.
*/
void CollectGraph( kbNode *current_node, BOOL_OP operation, bool detecthole, int graphnumber, bool& foundholes );
void CollectGraphLast( kbNode *current_node, BOOL_OP operation, bool detecthole, int graphnumber, bool& foundholes );
//! find a link not bin in the top left corner ( links should be sorted already )
/*!
Last found position is used to find it quickly.
Used in ExtractSimples()
*/
kbNode* GetMostTopLeft( TDLI<kbLink>* _LI );
//! calculates crossing for all links in a graph, and add those as part of the graph.
/*
It is not just crossings calculation, snapping close nodes is part of it.
This is not done at maximum stability in economic time.
There are faster ways, but hardly ever they solve the problems, and they do not snap.
Here it is on purpose split into separate steps, to get a better result in snapping, and
to reach a better stability.
\param Marge nodes and lines closer to eachother then this, are merged.
*/
bool CalculateCrossings( B_INT Marge );
//! equal nodes in position are merged into one.
int Merge_NodeToNode( B_INT Marge );
//! basic scan algorithm with a sweeping beam are line.
/*!
\param scantype a different face in the algorithm.
\param holes to detect hole when needed.
*/
int ScanGraph2( SCANTYPE scantype, bool& holes );
//! links not used for a certain operation can be deleted, simplifying extraction
void DeleteNonCond( BOOL_OP operation );
//! links not used for a certain operation can be set bin, simplifying extraction
void HandleNonCond( BOOL_OP operation );
//! debug
bool checksort();
//! used in correction/offset algorithm
bool Small( B_INT howsmall );
bool _bin;
DL_List<void*>* _linklist;
};
#endif
/*! \file graphlst.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: graphlst.h,v 1.4 2009/09/10 17:04:09 titato Exp $
*/
/* @@(#) $Source: /cvsroot/wxart2d/wxArt2D/thirdparty/kbool/include/kbool/graphlst.h,v $ $Revision: 1.4 $ $Date: 2009/09/10 17:04:09 $ */
/*
Program GRAPHLST.H
Purpose Implements a list of graphs (header)
Last Update 11-03-1996
*/
#ifndef GRAPHLIST_H
#define GRAPHLIST_H
#include "kbool/booleng.h"
#include "kbool/_lnk_itr.h"
#include "kbool/graph.h"
class Debug_driver;
class A2DKBOOLDLLEXP kbGraphList: public DL_List<void*>
{
protected:
Bool_Engine* _GC;
public:
kbGraphList( Bool_Engine* GC );
kbGraphList( kbGraphList* other );
~kbGraphList();
void MakeOneGraph( kbGraph *total );
void Prepare( kbGraph *total );
void MakeRings();
void Correction();
void Simplify( double marge );
void Smoothen( double marge );
void Merge();
void Boolean( BOOL_OP operation, int intersectionRunsMax );
void WriteGraphs();
void WriteGraphsKEY( Bool_Engine* GC );
protected:
void Renumber();
void UnMarkAll();
};
#endif
#ifndef __A2D_KBOOLMOD_H__
#define __A2D_KBOOLMOD_H__
#include "kbool/booleng.h"
#include "kbool/graph.h"
#include "kbool/graphlst.h"
#include "kbool/line.h"
#include "kbool/link.h"
#include "kbool/lpoint.h"
#include "kbool/node.h"
#include "kbool/record.h"
#include "kbool/scanbeam.h"
#endif
/*! \file line.h
\brief Mainy used for calculating crossings
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: line.h,v 1.5 2009/09/10 17:04:09 titato Exp $
*/
#ifndef LINE_H
#define LINE_H
#include "kbool/booleng.h"
#include "kbool/link.h"
class A2DKBOOLDLLEXP Bool_Engine;
// Status of a point to a line
enum PointStatus {LEFT_SIDE, RIGHT_SIDE, ON_AREA, IN_AREA};
class A2DKBOOLDLLEXP kbGraph;
class A2DKBOOLDLLEXP kbLine
{
protected:
Bool_Engine* m_GC;
public:
// constructors and destructor
kbLine( Bool_Engine* GC );
kbLine( kbLink*, Bool_Engine* GC );
~kbLine();
void Set( kbLink * );
kbLink* GetLink();
//! Get the beginnode from a line
kbNode* GetBeginNode();
//! Get the endnode from a line
kbNode* GetEndNode();
//! Check if two lines intersects
int CheckIntersect( kbLine*, double Marge );
//! Intersects two lines
int Intersect( kbLine*, double Marge );
int Intersect_simple( kbLine * lijn );
bool Intersect2( kbNode* crossing, kbLine * lijn );
//!For an infinite line
PointStatus PointOnLine( kbNode* a_node, double& Distance, double Marge );
//!For a non-infinite line
PointStatus PointInLine( kbNode* a_node, double& Distance, double Marge );
//! Caclulate Y if X is known
B_INT Calculate_Y( B_INT X );
B_INT Calculate_Y_from_X( B_INT X );
void Virtual_Point( kbLPoint *a_point, double distance );
//! assignment operator
kbLine& operator=( const kbLine& );
kbNode* OffsetContour( kbLine* const nextline, kbNode* last_ins, double factor, kbGraph *shape );
kbNode* OffsetContour_rounded( kbLine* const nextline, kbNode* _last_ins, double factor, kbGraph *shape );
bool OkeForContour( kbLine* const nextline, double factor, kbNode* LastLeft, kbNode* LastRight, LinkStatus& _outproduct );
bool Create_Ring_Shape( kbLine* nextline, kbNode** _last_ins_left, kbNode** _last_ins_right, double factor, kbGraph *shape );
void Create_Begin_Shape( kbLine* nextline, kbNode** _last_ins_left, kbNode** _last_ins_right, double factor, kbGraph *shape );
void Create_End_Shape( kbLine* nextline, kbNode* _last_ins_left, kbNode* _last_ins_right, double factor, kbGraph *shape );
//! Calculate the parameters if nessecary
void CalculateLineParameters();
//! Adds a crossing between the intersecting lines
void AddLineCrossing( B_INT , B_INT , kbLine * );
void AddCrossing( kbNode *a_node );
kbNode* AddCrossing( B_INT X, B_INT Y );
bool ProcessCrossings( TDLI<kbLink>* _LI );
// Linecrosslist
void SortLineCrossings();
bool CrossListEmpty();
DL_List<void*>* GetCrossList();
// bool HasInCrossList(kbNode*);
private:
//! Function needed for Intersect
int ActionOnTable1( PointStatus, PointStatus );
//! Function needed for Intersect
int ActionOnTable2( PointStatus, PointStatus );
double m_AA;
double m_BB;
double m_CC;
kbLink* m_link;
bool m_valid_parameters;
//! List with crossings through this link
DL_List<void*> *linecrosslist;
};
#endif
/*! \file link.h
\brief Part of a graph, connection between nodes (Header)
\author Klaas Holwerda or Julian Smart
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: link.h,v 1.5 2009/09/10 17:04:09 titato Exp $
*/
#ifndef LINK_H
#define LINK_H
#include "kbool/booleng.h"
#include "kbool/_lnk_itr.h"
enum LinkStatus {IS_LEFT, IS_ON, IS_RIGHT};
class kbLPoint;
class kbNode;
class kbRecord;
//! segment within a graph
/*
A Graph contains a list of kbLink, the kbLink or connected by Node's.
Several kbLink can be connected to one Node.
A kbLink has a direction defined by its begin and end node.
Node do have a list of connected kbLink's.
So one can walk trough a graph in two ways:
1- via its kbLink list
2- via the node connected to the kbLink's
*/
class A2DKBOOLDLLEXP kbLink
{
protected:
Bool_Engine* _GC;
public:
//! contructors
kbLink( Bool_Engine* GC );
//! contructors
kbLink( int graphnr, kbNode* begin, kbNode* end, Bool_Engine* GC );
//! contructors
kbLink( kbNode *begin, kbNode *end, Bool_Engine* GC );
//! destructors
~kbLink();
//! Merges the other node with argument
void MergeNodes( kbNode* const );
//! outproduct of two links
LinkStatus OutProduct( kbLink* const two, double accur );
//! link three compared to this and two
LinkStatus PointOnCorner( kbLink* const, kbLink* const );
//! Removes argument from the link
void Remove( kbNode* );
//! replaces olddone in the link by newnode
void Replace( kbNode* oldnode, kbNode* newnode );
//!top hole marking
void SetTopHole( bool value );
//!top hole marking
bool IsTopHole();
//! Marking functions
void UnMark();
//! Marking functions
void Mark();
//! Marking functions
void SetMark( bool );
//! Marking functions
bool IsMarked();
//! holelink Marking functions
void SetHoleLink( bool val ){ m_holelink = val;};
//! holelink Marking functions
bool GetHoleLink(){ return m_holelink;};
//! Bin functions
void SetNotBeenHere();
//! Bin functions
void SetBeenHere();
//! Have you been here ??
bool BeenHere();
//! Removes all the references to this
void UnLink();
//! functions for maximum performance
kbNode* GetBeginNode();
//! Datamember access functions
kbNode* GetEndNode();
kbNode* GetLowNode();
kbNode* GetHighNode();
//! Returns a next link beginning with argument
kbLink* Forth( kbNode* );
int GetGraphNum();
bool GetInc();
bool GetLeftA();
bool GetLeftB();
bool GetRightA();
bool GetRightB();
void GetLRO( kbLPoint*, int&, int&, double );
//! Return a node not equal to arg.
kbNode* GetOther( const kbNode* const );
//! Is this link unused ?
bool IsUnused();
//! Used for given operation ?
bool IsMarked( BOOL_OP operation );
//! return true if Left side is marked true for operation
bool IsMarkedLeft( BOOL_OP operation );
//! return true if Right side is marked true for operation
bool IsMarkedRight( BOOL_OP operation );
//! is this a hole link for given operation
bool IsHole( BOOL_OP operation );
//! set the hole mark
void SetHole( bool );
//! is the hole mark set?
bool GetHole();
//! Are the nodes on about the same coordinates ?
bool IsZero( B_INT marge );
bool ShorterThan( B_INT marge );
//! Resets the link
void Reset( kbNode* begin, kbNode* end, int graphnr = 0 );
void Set( kbNode* begin, kbNode* end );
void SetBeginNode( kbNode* );
void SetEndNode( kbNode* );
void SetGraphNum( int );
void SetInc( bool );
void SetLeftA( bool );
void SetLeftB( bool );
void SetRightA( bool );
void SetRightB( bool );
void SetGroup( GroupType );
GroupType Group();
//! Flag calculation (internal only)
void SetLineTypes();
void Reset();
void Reset_flags();
//!put in this direction
void Redirect( kbNode* a_node );
void TakeOverOperationFlags( kbLink* link );
void SetRecordNode( DL_Node<kbRecord*>* recordNode ) { m_record = recordNode; }
DL_Node<kbRecord*>* GetRecordNode() { return m_record; }
protected:
//! The mainitems of a link
kbNode *m_beginnode, *m_endnode;
//! Marker for walking over the graph
bool m_bin : 1;
//! Is this a part of hole ?
bool m_hole : 1;
//! link that is toplink of hole?
bool m_hole_top : 1;
//! going in one more time in this graph if true else going out one time
bool m_Inc : 1;
//! Is left in polygongroup A
bool m_LeftA : 1;
//! Is right in polygon group A
bool m_RightA : 1;
//! Is left in polygon group B
bool m_LeftB : 1;
//! Is right in polygongroup B
bool m_RightB : 1;
//! General purose marker, internally unused
bool m_mark : 1;
//! link for linking holes
bool m_holelink : 1;
//! Marker for Merge Left
bool m_merge_L : 1;
//! Marker for substract a-b Left
bool m_a_substract_b_L: 1;
//! Marker for substract b-a Left
bool m_b_substract_a_L: 1;
//! Marker for intersect Left
bool m_intersect_L: 1;
//! Marker for X-OR Left
bool m_exor_L: 1;
//! Marker for Merge Right
bool m_merge_R : 1;
//! Marker for substract a-b Right
bool m_a_substract_b_R: 1;
//! Marker for substract b-a Right
bool m_b_substract_a_R: 1;
//! Marker for intersect Right
bool m_intersect_R: 1;
//! Marker for X-OR Right
bool m_exor_R: 1;
//! belongs to group A or B
GroupType m_group : 1;
//! belongs to this polygon part in the graph.
int m_graphnum;
DL_Node<kbRecord*>* m_record;
};
#endif
/*! \file lpoint.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: lpoint.h,v 1.4 2009/09/10 17:04:09 titato Exp $
*/
/* @@(#) $Source: /cvsroot/wxart2d/wxArt2D/thirdparty/kbool/include/kbool/lpoint.h,v $ $Revision: 1.4 $ $Date: 2009/09/10 17:04:09 $ */
/*
Program LPOINT.H
Purpose Definition of GDSII pointtype structure
Last Update 12-12-1995
*/
#ifndef LPOINT_H
#define LPOINT_H
#include "kbool/booleng.h"
class A2DKBOOLDLLEXP kbLPoint
{
public:
kbLPoint();
kbLPoint( B_INT const , B_INT const );
kbLPoint( kbLPoint* const );
void Set( const B_INT, const B_INT );
void Set( const kbLPoint & );
kbLPoint GetPoint();
B_INT GetX();
B_INT GetY();
void SetX( B_INT );
void SetY( B_INT );
bool Equal( const kbLPoint a_point, B_INT Marge );
bool Equal( const B_INT, const B_INT , B_INT Marge );
bool ShorterThan( const kbLPoint a_point, B_INT marge );
bool ShorterThan( const B_INT X, const B_INT Y, B_INT );
kbLPoint &operator=( const kbLPoint & );
kbLPoint &operator+( const kbLPoint & );
kbLPoint &operator-( const kbLPoint & );
kbLPoint &operator*( int );
kbLPoint &operator/( int );
int operator==( const kbLPoint & ) const;
int operator!=( const kbLPoint & ) const;
protected:
B_INT _x;
B_INT _y;
};
#endif
/*! \file node.h
\brief Holds a GDSII node structure (Header)
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: node.h,v 1.7 2009/09/14 16:50:12 titato Exp $
*/
#ifndef NODE_H
#define NODE_H
#include "kbool/booleng.h"
#include "kbool/lpoint.h"
#include "kbool/link.h"
#include "kbool/_lnk_itr.h" // LinkBaseIter
#include <math.h>
enum NodePosition { N_LEFT, N_ON, N_RIGHT};
class A2DKBOOLDLLEXP kbNode : public kbLPoint
{
protected:
Bool_Engine* _GC;
public:
// friend must be deleted in the final version!
friend class Debug_driver;
// constructors and destructors
kbNode( Bool_Engine* GC );
kbNode( const B_INT, const B_INT, Bool_Engine* GC );
kbNode( kbLPoint* const a_point, Bool_Engine* GC );
kbNode( kbNode * const, Bool_Engine* GC );
kbNode& operator=( const kbNode &other_node );
~kbNode();
//public member functions
void AddLink( kbLink* );
DL_List<void*>* GetLinklist();
//! check two link for its operation flags to be the same when coming from the prev link.
bool SameSides( kbLink* const prev , kbLink* const link, BOOL_OP operation );
//! get the link most right or left to the current link, but with the specific operation
/*! flags the same on the sides of the new link.
*/
kbLink* GetMost( kbLink* const prev , LinkStatus whatside, BOOL_OP operation );
//! get link that is leading to a hole ( hole segment or linking segment )
kbLink* GetMostHole( kbLink* const prev , LinkStatus whatside, BOOL_OP operation,
bool searchholelink = true );
//! get link that is not vertical.
kbLink* GetNotFlat();
//! get a link to a hole or from a hole.
kbLink* GetHoleLink( kbLink* const prev, LinkStatus whatside,
bool checkbin, BOOL_OP operation );
int Merge( kbNode* );
void RemoveLink( kbLink* );
bool Simplify( kbNode* First, kbNode* Second, B_INT Marge );
// memberfunctions for maximum performance
void RoundInt( B_INT grid );
kbLink* GetIncomingLink();
int GetNumberOfLinks();
kbLink* GetNextLink();
kbLink* GetOtherLink( kbLink* );
kbLink* GetOutgoingLink();
kbLink* GetPrevLink();
kbLink* Follow( kbLink* const prev );
kbLink* GetBinHighest( bool binset );
protected:
DL_List<void*>* _linklist;
};
#endif
/*! \file record.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: record.h,v 1.5 2009/09/10 17:04:09 titato Exp $
*/
#ifndef RECORD_H
#define RECORD_H
class kbNode;
#include "kbool/booleng.h"
#include "kbool/link.h"
#include "kbool/line.h"
enum BEAM_TYPE { NORMAL, FLAT};
enum DIRECTION {GO_LEFT, GO_RIGHT};
//extern void DeleteRecordPool();
class A2DKBOOLDLLEXP Bool_Engine;
class A2DKBOOLDLLEXP kbRecord
{
protected:
Bool_Engine* _GC;
public:
// void deletepool();
kbRecord( kbLink* link, Bool_Engine* GC );
~kbRecord();
// void* operator new(size_t size);
// void operator delete(void* recordptr);
void SetNewLink( kbLink* link );
void Set_Flags();
void Calc_Ysp( kbNode* low );
kbLink* GetLink();
kbLine* GetLine();
B_INT Ysp();
void SetYsp( B_INT ysp );
DIRECTION Direction();
bool Calc_Left_Right( kbRecord* record_above_me );
bool Equal( kbRecord* );
private:
kbLine _line;
B_INT _ysp;
//! going left are right in beam
DIRECTION _dir;
//! how far in group_a
int _a;
//! how far in group_b
int _b;
};
#endif
/*! \file scanbeam.h
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: scanbeam.h,v 1.6 2009/09/10 17:04:09 titato Exp $
*/
#ifndef SCANBEAM_H
#define SCANBEAM_H
#include "kbool/booleng.h"
#include "kbool/_lnk_itr.h"
#include "kbool/record.h"
#include "kbool/link.h"
enum SCANTYPE{NODELINK, LINKLINK, GENLR, LINKHOLES, INOUT};
#if defined(WXART2D_USINGDLL)
template class A2DKBOOLDLLEXP DL_Iter<kbRecord*>;
#endif
class A2DKBOOLDLLEXP ScanBeam : public DL_List<kbRecord*>
{
protected:
Bool_Engine* _GC;
public:
ScanBeam( Bool_Engine* GC );
~ScanBeam();
void SetType( kbNode* low, kbNode* high );
bool FindNew( SCANTYPE scantype, TDLI<kbLink>* _I, bool& holes );
bool RemoveOld( SCANTYPE scantype, TDLI<kbLink>* _I, bool& holes );
private:
bool ProcessHoles( bool atinsert, TDLI<kbLink>* _LI );
int Process_LinkToLink_Crossings(); // find crossings
int Process_PointToLink_Crossings();
int Process_LinkToLink_Flat( kbLine* flatline );
void SortTheBeam( bool backangle );
bool checksort();
bool writebeam();
void Calc_Ysp();
//int FindCloseLinksAndCross(TDLI<kbLink>* _I,kbNode* _lowf);
void Generate_INOUT( int graphnumber );
kbNode* _low;
DL_Iter<kbRecord*> _BI;
int lastinserted;
BEAM_TYPE _type;
};
#endif
/*! \file statusb.h
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: statusb.h,v 1.3 2009/02/06 21:33:03 titato Exp $
*/
/* @@(#) $Source: /cvsroot/wxart2d/wxArt2D/thirdparty/kbool/include/kbool/statusb.h,v $ $Revision: 1.3 $ $Date: 2009/02/06 21:33:03 $ */
/*
Program STATUSB.H
Purpose Controls the statusbar of the application (header)
This statusbar is a typical Windows statusbar
For porting to another platform there must be a StatusBar class
derived from this.
User interface element (See documentation for more details
about the functions needed in this class)
*/
#ifndef STATUSB_H
#define STATUSB_H
#include <time.h>
// abstract base class for own statusbar inherite from it
class A2DKBOOLDLLEXP StatusBar
{
public:
// constructor & destructor
StatusBar(){};
~StatusBar(){};
virtual void SetXY( double = 0.0, double = 0.0 ) = 0;
virtual void ResetCoord() = 0;
virtual void SetFile( char* = 0 ) = 0;
virtual void SetProcess( char* = 0 ) = 0;
virtual void SetTime( time_t seconds = 0 ) = 0;
virtual void SetRecording( int status = 0 ) = 0;
virtual void SetZoom( float factor = 1 ) = 0;
virtual void Reset() = 0;
void StartDTimer();
void EndDTimer();
int GetDTimerOn();
time_t GetDTimer();
protected:
int timer;
time_t oldtime;
time_t curtime;
};
#endif
/*! \file valuesvc.h
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: valuesvc.h,v 1.2 2009/02/06 21:33:03 titato Exp $
*/
Boolean: GDSII viewer/editor + (boolean) operations on sets of 2d polygons.
Boolean Web Site:
http://boolean.klaasholwerda.nl/bool.html
kbool is also used in wxArt2D
see www.wxart2d.org
the last version of kbool can be found on this site.
The kbool library is dual licensed.
The GPL applies for open source, but for commercial use it is proprietary.
Contact copyright holder for more information on other licensing schemes.
Software library is provided "AS IS" without warranty of any kind, conform point 16 and 17 down here.
Next a copy of the GPL license text.
==========================================================================
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
\ No newline at end of file
add_executable(boolonly boolonly.cpp)
if(WIN32)
add_definitions(-D_MSWVC_)
else(WIN32)
add_definitions(-D__UNIX__)
endif(WIN32)
include_directories(${kbool_SOURCE_DIR}/..)
target_link_libraries(boolonly kbool)
/*! \file samples/boolonly/boolonly.cpp
\brief boolonly demonstrates the use of the boolean algorithm
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: boolonly.cpp,v 1.7 2009/05/28 19:49:48 titato Exp $
*/
#include "boolonly.h"
#include <math.h>
// Constructors
KBoolPoint::KBoolPoint()
{
_x = 0.0;
_y = 0.0;
}
KBoolPoint::KBoolPoint( double const X, double const Y )
{
_x = X;
_y = Y;
}
double KBoolPoint::GetX()
{
return _x;
}
double KBoolPoint::GetY()
{
return _y;
}
template class TDLI<KBoolPoint>;
void ArmBoolEng( Bool_Engine* booleng )
{
// set some global vals to arm the boolean engine
double DGRID = 1000; // round coordinate X or Y value in calculations to this
double MARGE = 0.001; // snap with in this range points to lines in the intersection routines
// should always be > DGRID a MARGE >= 10*DGRID is oke
// this is also used to remove small segments and to decide when
// two segments are in line.
double CORRECTIONFACTOR = 500.0; // correct the polygons by this number
double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction
double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle
double SMOOTHABER = 10.0; // accuracy when smoothing a polygon
double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen
// DGRID is only meant to make fractional parts of input data which
// are doubles, part of the integers used in vertexes within the boolean algorithm.
// Within the algorithm all input data is multiplied with DGRID
// space for extra intersection inside the boolean algorithms
// only change this if there are problems
int GRID = 10000;
booleng->SetMarge( MARGE );
booleng->SetGrid( GRID );
booleng->SetDGrid( DGRID );
booleng->SetCorrectionFactor( CORRECTIONFACTOR );
booleng->SetCorrectionAber( CORRECTIONABER );
booleng->SetSmoothAber( SMOOTHABER );
booleng->SetMaxlinemerge( MAXLINEMERGE );
booleng->SetRoundfactor( ROUNDFACTOR );
}
void AddPolygonsToBoolEng2( Bool_Engine* booleng )
{
int x1 = 100;
int x2 = 200;
int y1 = 100;
int y2 = 200;
int pitch1 = 200;
int numRowsAndCols = 120;
int i, j;
for ( i = 0; i < numRowsAndCols; i++ )
{
for ( j = 0; j < numRowsAndCols; j++ )
{
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_A ) )
{
// Counter-Clockwise
booleng->AddPoint( x1, y1 );
booleng->AddPoint( x2, y1 );
booleng->AddPoint( x2, y2 );
booleng->AddPoint( x1, y2 );
}
booleng->EndPolygonAdd();
x1 += pitch1;
x2 += pitch1;
}
x1 = 100;
x2 = 200;
y1 += pitch1;
y2 += pitch1;
}
x1 = 150;
x2 = 250;
y1 = 150;
y2 = 250;
for ( i = 0; i < numRowsAndCols; i++ )
{
for ( int j = 0; j < numRowsAndCols; j++ )
{
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_B ) )
{
// Counter Clockwise
booleng->AddPoint( x1, y1 );
booleng->AddPoint( x2, y1 );
booleng->AddPoint( x2, y2 );
booleng->AddPoint( x1, y2 );
}
booleng->EndPolygonAdd();
x1 += pitch1;
x2 += pitch1;
}
x1 = 150;
x2 = 250;
y1 += pitch1;
y2 += pitch1;
}
}
void AddPolygonsToBoolEng( Bool_Engine* booleng )
{
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_A ) )
{
booleng->AddPoint( 28237.480000, 396.364000 );
booleng->AddPoint( 28237.980000, 394.121000 );
booleng->AddPoint( 28242.000000, 395.699000 );
booleng->AddPoint( 28240.830000, 397.679000 );
}
booleng->EndPolygonAdd();
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_B ) )
{
booleng->AddPoint( 28242.100000, 398.491000 );
booleng->AddPoint( 28240.580000, 397.485000 );
booleng->AddPoint( 28237.910000, 394.381000 );
}
booleng->EndPolygonAdd();
if ( booleng->StartPolygonAdd( GROUP_B ) )
{
booleng->AddPoint( 28243.440000, 399.709000 );
booleng->AddPoint( 28237.910000, 394.381000 );
booleng->AddPoint( 28239.290000, 394.763000 );
}
booleng->EndPolygonAdd();
}
void AddPolygonsToBoolEng3( Bool_Engine* booleng )
{
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_A ) )
{
booleng->AddPoint( 100, 100 );
booleng->AddPoint( -100, 100 );
booleng->AddPoint( -100, -100 );
booleng->AddPoint( 100, -100 );
}
booleng->EndPolygonAdd();
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_B ) )
{
booleng->AddPoint( 50, 50 );
booleng->AddPoint( -50, 50 );
booleng->AddPoint( -50, -50 );
booleng->AddPoint( 50, -50 );
booleng->EndPolygonAdd();
}
booleng->EndPolygonAdd();
}
void AddPolygonsToBoolEng4( Bool_Engine* booleng )
{
// foreach point in a polygon ...
if ( booleng->StartPolygonAdd( GROUP_A ) )
{
booleng->AddPoint( 0, 0 );
booleng->AddPoint( 0, 1000 );
booleng->AddPoint( 1000, 1000 );
booleng->AddPoint( 1000, 0 );
}
booleng->EndPolygonAdd();
}
void GetPolygonsFromBoolEng( Bool_Engine* booleng )
{
// foreach resultant polygon in the booleng ...
while ( booleng->StartPolygonGet() )
{
// foreach point in the polygon
while ( booleng->PolygonHasMorePoints() )
{
fprintf( stderr, "x = %f\t", booleng->GetPolygonXPoint() );
fprintf( stderr, "y = %f\n", booleng->GetPolygonYPoint() );
}
booleng->EndPolygonGet();
}
}
void GetPolygonsFromBoolEngKEY( Bool_Engine* booleng )
{
FILE * file = fopen( "keyfile.key", "w" );
fprintf( file, "\
HEADER 5; \
BGNLIB; \
LASTMOD {2-11-15 15:39:21}; \
LASTACC {2-11-15 15:39:21}; \
LIBNAME trial; \
UNITS; \
USERUNITS 0.0001; PHYSUNITS 2.54e-009; \
\
BGNSTR; \
CREATION {2-11-15 15:39:21}; \
LASTMOD {2-11-15 15:39:21}; \
STRNAME top; \
");
// foreach resultant polygon in the booleng ...
while ( booleng->StartPolygonGet() )
{
fprintf(file,"BOUNDARY; LAYER 2; DATATYPE 0;\n");
fprintf(file," XY % d; \n",booleng->GetNumPointsInPolygon()+1 );
booleng->PolygonHasMorePoints();
double firstx = booleng->GetPolygonXPoint();
double firsty = booleng->GetPolygonYPoint();
fprintf(file,"X % f;\t", firstx);
fprintf(file,"Y % f; \n", firsty);
// foreach point in the polygon
while ( booleng->PolygonHasMorePoints() )
{
fprintf(file,"X % f;\t", booleng->GetPolygonXPoint());
fprintf(file,"Y % f; \n", booleng->GetPolygonYPoint());
}
booleng->EndPolygonGet();
fprintf(file,"X % f;\t", firstx);
fprintf(file,"Y % f; \n", firsty);
fprintf(file,"ENDEL;\n");
}
fprintf(file,"\
ENDSTR top; \
ENDLIB; \
");
fclose (file);
}
int main()
{
printf( "------------------------------------------------------\n" );
printf( " | Unit test of the KBool Engine | \n" );
printf( "------------------------------------------------------\n" );
float correction;
char a = '1';
while (a != '0')
{
Bool_Engine* booleng = new Bool_Engine();
ArmBoolEng( booleng );
AddPolygonsToBoolEng3( booleng );
printf( "\n***********************************\n" );
printf( "*** version: % s \n", booleng->GetVersion().c_str() );
printf( "***********************************\n" );
printf( "1: OR operation\n" );
printf( "2: AND operation\n" );
printf( "3: EXOR operation\n" );
printf( "4: A subtract B\n" );
printf( "5: B subtract A\n" );
printf( "6: Correct each polygon with a factor\n" );
printf( "7: Smoothen each polygon\n" );
printf( "8: Make a ring around each polygon\n" );
printf( "9: No operation\n" );
printf( "0: Quit\n" );
printf( "***********************************\n" );
printf( "type a number and <return>" );
scanf("%c", &a, 1);
//scanf( " % c", &a );
switch (a)
{
case ('0'):
{
GetPolygonsFromBoolEng( booleng );
break;
}
case ('1'):
booleng->Do_Operation(BOOL_OR);
break;
case ('2'):
booleng->Do_Operation(BOOL_AND);
break;
case ('3'):
booleng->Do_Operation(BOOL_EXOR);
break;
case ('4'):
booleng->Do_Operation(BOOL_A_SUB_B);
break;
case ('5'):
booleng->Do_Operation(BOOL_B_SUB_A);
break;
case ('6'):
printf( "give correction factor ( eg. 100.0 or - 100.0 )<return>: ");
scanf(" % f", &correction ); // correct the polygons by this number
booleng->SetCorrectionFactor( correction );
booleng->Do_Operation(BOOL_CORRECTION);
break;
case ('7'):
booleng->Do_Operation(BOOL_SMOOTHEN);
break;
case ('8'):
printf("give width of ring <return>: ");
scanf(" % f", &correction );
// create a ring of this size
booleng->SetCorrectionFactor( fabs( correction / 2.0) );
booleng->Do_Operation(BOOL_MAKERING);
break;
case ('9'):
break;
default:
break;
}
if (a != '0')
{
printf("\nresulting polygons\n" );
GetPolygonsFromBoolEng( booleng );
//OR USE THIS
//GetPolygonsFromBoolEngKEY( booleng );
printf( "\n\ntype a character and <return>");
scanf( " % c", &a );
}
delete booleng;
}
return 0;
}
/*! \file kbool/samples/boolonly/boolonly.h
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: boolonly.h,v 1.5 2009/02/06 21:33:03 titato Exp $
*/
#include "kbool/booleng.h"
#include "kbool/_lnk_itr.h"
class KBoolPoint
{
public:
KBoolPoint();
KBoolPoint( double const , double const );
double GetX();
double GetY();
private:
double _x;
double _y;
};
mondrian ICON "sample.ico"
#include "wx/msw/wx.rc"
if(WIN32)
add_definitions(-D_MSWVC_)
else(WIN32)
add_definitions(-D__UNIX__)
endif(WIN32)
include_directories(../include)
set(KBOOL_SRCS
booleng.cpp
graph.cpp
graphlst.cpp
line.cpp
link.cpp
lpoint.cpp
node.cpp
record.cpp
scanbeam.cpp)
add_library(kbool STATIC ${KBOOL_SRCS})
/*! \file src/booleng.cpp
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: booleng.cpp,v 1.7 2009/09/14 16:50:12 titato Exp $
*/
#include "kbool/booleng.h"
#include <time.h>
#include "kbool/link.h"
#include "kbool/line.h"
#include "kbool/node.h"
#include "kbool/graph.h"
#include "kbool/graphlst.h"
B_INT bmin( B_INT const value1, B_INT const value2 )
{
return( ( value1 < value2 ) ? value1 : value2 );
}
B_INT bmax( B_INT const value1, B_INT const value2 )
{
return( ( value1 > value2 ) ? value1 : value2 );
}
B_INT babs( B_INT a )
{
if ( a < 0 ) a = -a;
return a;
}
//-------------------------------------------------------------------/
//----------------- Bool_Engine_Error -------------------------------/
//-------------------------------------------------------------------/
Bool_Engine_Error::Bool_Engine_Error( string message, string header, int degree, int fatal )
{
_message = message;
_header = header;
_degree = degree;
_fatal = fatal;
}
Bool_Engine_Error::Bool_Engine_Error( const Bool_Engine_Error& a )
{
_message = a._message;
_header = a._header;
_degree = a._degree;
_fatal = a._fatal;
}
Bool_Engine_Error::~Bool_Engine_Error()
{
_message = "";
_header = "";
}
string Bool_Engine_Error::GetErrorMessage()
{
return _message;
}
string Bool_Engine_Error::GetHeaderMessage()
{
return _header;
}
int Bool_Engine_Error::GetErrorDegree()
{
return _degree;
}
int Bool_Engine_Error::GetFatal()
{
return _fatal;
}
//-------------------------------------------------------------------/
//----------------- Bool_Engine -------------------------------------/
//-------------------------------------------------------------------/
Bool_Engine::Bool_Engine()
{
_linkiter = new TDLI<kbLink>();
m_intersectionruns = 1;
m_orientationEntryMode = false;
m_doLinkHoles = true;
m_allowNonTopHoleLinking = true;
m_graphlist = new kbGraphList( this );
m_ACCUR = 1e-4;
m_WINDINGRULE = true;
m_GraphToAdd = NULL;
m_firstNodeToAdd = NULL;
m_lastNodeToAdd = NULL;
m_logfile = NULL;
#if KBOOL_LOG == 1
SetLog( true );
#else
SetLog( false );
#endif
}
Bool_Engine::~Bool_Engine()
{
if ( m_logfile != NULL )
fclose ( m_logfile );
delete _linkiter;
delete m_graphlist;
}
void Bool_Engine::SetLog( bool OnOff )
{
m_doLog = OnOff;
if ( m_doLog )
{
if ( m_logfile == NULL )
{
// create a new logfile
m_logfile = fopen( KBOOL_LOGFILE, "w" );
if ( m_logfile == NULL )
fprintf( stderr, "Bool_Engine: Unable to write to Boolean Engine logfile\n" );
else
{
time_t timer;
struct tm * today;
timer = time( NULL );
today = localtime( &timer );
fprintf( m_logfile, "Logfile created on:\t\t\t%s", ctime( &timer ) );
}
}
}
else
{
if ( m_logfile != NULL )
{
fclose ( m_logfile );
m_logfile = NULL;
}
}
}
void Bool_Engine::SetState( string process )
{
Write_Log( process );
}
void Bool_Engine::error( string text, string title )
{
Write_Log( "FATAL ERROR: ", title );
Write_Log( "FATAL ERROR: ", text );
throw Bool_Engine_Error( " Fatal Error", "Fatal Error", 9, 1 );
}
void Bool_Engine::info( string text, string title )
{
Write_Log( "FATAL ERROR: ", title );
Write_Log( "FATAL ERROR: ", text );
}
void Bool_Engine::SetMarge( double marge )
{
m_MARGE = marge;
Write_Log( "Bool_Engine::m_MARGE = %f\n", m_MARGE );
}
double Bool_Engine::GetAccur()
{
return m_ACCUR;
}
void Bool_Engine::SetRoundfactor( double roundfac )
{
m_ROUNDFACTOR = roundfac;
Write_Log( "Bool_Engine::m_ROUNDFACTOR = %f\n", m_ROUNDFACTOR );
}
double Bool_Engine::GetRoundfactor()
{
return m_ROUNDFACTOR;
}
double Bool_Engine::GetMarge()
{
return m_MARGE;
}
void Bool_Engine::SetDGrid( double dgrid )
{
m_DGRID = dgrid;
Write_Log( "Bool_Engine::m_DGRID = %f\n", m_DGRID );
}
double Bool_Engine::GetDGrid()
{
return m_DGRID;
}
void Bool_Engine::SetGrid( B_INT grid )
{
m_GRID = grid;
Write_Log( "Bool_Engine::m_GRID = %lld\n", m_GRID );
}
B_INT Bool_Engine::GetGrid()
{
return m_GRID;
}
void Bool_Engine::SetCorrectionAber( double aber )
{
m_CORRECTIONABER = aber;
Write_Log( "Bool_Engine::m_CORRECTIONABER = %f\n", m_CORRECTIONABER );
}
double Bool_Engine::GetCorrectionAber()
{
return m_CORRECTIONABER;
}
void Bool_Engine::SetCorrectionFactor( double aber )
{
m_CORRECTIONFACTOR = aber;
Write_Log( "Bool_Engine::m_CORRECTIONFACTOR = %f\n", m_CORRECTIONFACTOR );
}
double Bool_Engine::GetCorrectionFactor()
{
return m_CORRECTIONFACTOR;
}
void Bool_Engine::SetSmoothAber( double aber )
{
m_SMOOTHABER = aber;
Write_Log( "Bool_Engine::m_SMOOTHABER = %f\n", m_SMOOTHABER );
}
double Bool_Engine::GetSmoothAber()
{
return m_SMOOTHABER;
}
void Bool_Engine::SetMaxlinemerge( double maxline )
{
m_MAXLINEMERGE = maxline;
Write_Log( "Bool_Engine::m_MAXLINEMERGE = %f\n", m_MAXLINEMERGE );
}
double Bool_Engine::GetMaxlinemerge()
{
return m_MAXLINEMERGE;
}
void Bool_Engine::SetWindingRule( bool rule )
{
m_WINDINGRULE = rule;
}
bool Bool_Engine::GetWindingRule()
{
return m_WINDINGRULE;
}
void Bool_Engine::SetInternalMarge( B_INT marge )
{
m_MARGE = ( double )marge / m_GRID / m_DGRID;
}
B_INT Bool_Engine::GetInternalMarge()
{
return ( B_INT ) ( m_MARGE * m_GRID * m_DGRID );
}
double Bool_Engine::GetInternalCorrectionAber()
{
return m_CORRECTIONABER * m_GRID * m_DGRID;
}
double Bool_Engine::GetInternalCorrectionFactor()
{
return m_CORRECTIONFACTOR * m_GRID * m_DGRID;
}
double Bool_Engine::GetInternalSmoothAber()
{
return m_SMOOTHABER * m_GRID * m_DGRID;
}
B_INT Bool_Engine::GetInternalMaxlinemerge()
{
return ( B_INT ) ( m_MAXLINEMERGE * m_GRID * m_DGRID );
}
#define TRIALS 30
bool Bool_Engine::Do_Operation( BOOL_OP operation )
{
#if KBOOL_DEBUG
kbGraphList * saveme = new kbGraphList( m_graphlist );
#endif
try
{
switch ( operation )
{
case ( BOOL_OR ):
case ( BOOL_AND ):
case ( BOOL_EXOR ):
case ( BOOL_A_SUB_B ):
case ( BOOL_B_SUB_A ):
m_graphlist->Boolean( operation, m_intersectionruns );
break;
case ( BOOL_CORRECTION ):
m_graphlist->Correction();
break;
case ( BOOL_MAKERING ):
m_graphlist->MakeRings();
break;
case ( BOOL_SMOOTHEN ):
m_graphlist->Smoothen( GetInternalSmoothAber() );
break;
default:
{
error( "Wrong operation", "Command Error" );
return false;
}
}
}
catch ( Bool_Engine_Error & error )
{
#if KBOOL_DEBUG
delete m_graphlist;
m_graphlist = new kbGraphList( saveme );
m_graphlist->WriteGraphsKEY( this );
#endif
if ( m_logfile != NULL )
{
fclose ( m_logfile );
m_logfile = NULL;
}
info( error.GetErrorMessage(), "error" );
throw error;
}
catch( ... )
{
#if KBOOL_DEBUG
delete m_graphlist;
m_graphlist = new kbGraphList( saveme );
m_graphlist->WriteGraphsKEY( this );
#endif
if ( m_logfile != NULL )
{
fclose ( m_logfile );
m_logfile = NULL;
}
info( "Unknown exception", "error" );
throw ;
}
#if KBOOL_DEBUG
delete saveme;
#endif
return true;
}
bool Bool_Engine::StartPolygonAdd( GroupType A_or_B )
{
#if KBOOL_DEBUG
if ( m_logfile != NULL )
fprintf( m_logfile, "-> StartPolygonAdd(%d)\n", A_or_B );
#endif
if ( m_GraphToAdd != NULL )
return false;
kbGraph *myGraph = new kbGraph( this );
m_graphlist->insbegin( myGraph );
m_GraphToAdd = myGraph;
m_groupType = A_or_B;
return true;
}
bool Bool_Engine::AddPoint( double x, double y )
{
if ( m_GraphToAdd == NULL ){return false;}
double scaledx = x * m_DGRID * m_GRID;
double scaledy = y * m_DGRID * m_GRID;
if ( scaledx > MAXB_INT || scaledx < MINB_INT )
error( "X coordinate of vertex to big", "" );
if ( scaledy > MAXB_INT || scaledy < MINB_INT )
error( "Y coordinate of vertex to big", "" );
B_INT rintx = ( ( B_INT ) ( x * m_DGRID ) ) * m_GRID;
B_INT rinty = ( ( B_INT ) ( y * m_DGRID ) ) * m_GRID;
kbNode *myNode = new kbNode( rintx, rinty, this );
// adding first point to graph
if ( m_firstNodeToAdd == NULL )
{
#if KBOOL_DEBUG
if ( m_logfile != NULL )
{
fprintf( m_logfile, "-> AddPt() *FIRST* :" );
fprintf( m_logfile, " input: x = %f, y = %f\n", x, y );
fprintf( m_logfile, " input: x = %I64d, y = %I64d\n", rintx, rinty ) ;
}
#endif
m_firstNodeToAdd = ( kbNode * ) myNode;
m_lastNodeToAdd = ( kbNode * ) myNode;
}
else
{
#if KBOOL_DEBUG
if ( m_logfile != NULL )
{
fprintf( m_logfile, "-> AddPt():" );
fprintf( m_logfile, " input: x = %f, y = %f\n", x, y );
fprintf( m_logfile, " input: x = %I64d, y = %I64d\n", rintx, rinty ) ;
}
#endif
m_GraphToAdd->AddLink( m_lastNodeToAdd, myNode );
m_lastNodeToAdd = ( kbNode * ) myNode;
}
return true;
}
bool Bool_Engine::EndPolygonAdd()
{
if ( m_GraphToAdd == NULL ) {return false;}
m_GraphToAdd->AddLink( m_lastNodeToAdd, m_firstNodeToAdd );
m_GraphToAdd->SetGroup( m_groupType );
m_GraphToAdd = NULL;
m_lastNodeToAdd = NULL;
m_firstNodeToAdd = NULL;
return true;
}
bool Bool_Engine::StartPolygonGet()
{
if ( !m_graphlist->empty() )
{
m_getGraph = ( kbGraph* ) m_graphlist->headitem();
m_getLink = m_getGraph->GetFirstLink();
m_getNode = m_getLink->GetBeginNode();
m_numPtsInPolygon = m_getGraph->GetNumberOfLinks();
m_numNodesVisited = 0;
return true;
}
else
{
return false;
}
}
bool Bool_Engine::PolygonHasMorePoints()
{
// see if first point
if ( m_numNodesVisited == 0 )
{
// don't need to touch the m_getNode
m_numNodesVisited++;
return true;
}
if ( m_numNodesVisited < m_numPtsInPolygon )
{
// traverse to the next node
m_getNode = m_getLink->GetOther( m_getNode );
m_getLink = m_getLink->Forth( m_getNode );
m_numNodesVisited++;
return true;
}
else
{
return false;
}
}
void Bool_Engine::EndPolygonGet()
{
m_graphlist->removehead();
delete m_getGraph;
}
double Bool_Engine::GetPolygonXPoint()
{
return m_getNode->GetX() / m_GRID / m_DGRID;
}
double Bool_Engine::GetPolygonYPoint()
{
return m_getNode->GetY() / m_GRID / m_DGRID;
}
bool Bool_Engine::GetHoleSegment()
{
if ( m_getLink->GetHole() )
return true;
return false;
}
bool Bool_Engine::GetHoleConnectionSegment()
{
if ( m_getLink->GetHoleLink() )
return true;
return false;
}
kbEdgeType Bool_Engine::GetPolygonPointEdgeType()
{
// see if the point is the beginning of a false edge
if ( m_getLink->GetHoleLink() )
return KB_FALSE_EDGE;
else
// it's either an outside or inside edge
if ( m_getLink->GetHole() )
return KB_INSIDE_EDGE;
else
return KB_OUTSIDE_EDGE;
}
void Bool_Engine::Write_Log( string msg1 )
{
if ( m_logfile == NULL )
return;
fprintf( m_logfile, "%s \n", msg1.c_str() );
}
void Bool_Engine::Write_Log( string msg1, string msg2 )
{
if ( m_logfile == NULL )
return;
fprintf( m_logfile, "%s %s\n", msg1.c_str(), msg2.c_str() );
}
void Bool_Engine::Write_Log( string fmt, double dval )
{
if ( m_logfile == NULL )
return;
fprintf( m_logfile, fmt.c_str(), dval );
}
void Bool_Engine::Write_Log( string fmt, B_INT bval )
{
if ( m_logfile == NULL )
return;
fprintf( m_logfile, fmt.c_str(), bval );
}
/*! \file src/graph.cpp
\brief Used to Intercect and other process functions
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: graph.cpp,v 1.7 2009/09/14 16:50:12 titato Exp $
*/
// Grpah is the structure used to store polygons
#include "kbool/booleng.h"
#include "kbool/graph.h"
#include "kbool/graphlst.h"
#include "kbool/node.h"
// Prototype of function
int linkXYsorter( kbLink *, kbLink * );
int linkYXsorter( kbLink *, kbLink * );
int linkLsorter( kbLink *, kbLink * );
int linkYXtopsorter( kbLink *a, kbLink *b );
int linkGraphNumsorter( kbLink *_l1, kbLink* _l2 );
// constructor, initialize with one link
// usage: kbGraph *a_graph = new kbGraph(a_link);
kbGraph::kbGraph( kbLink *a_link, Bool_Engine* GC )
{
_GC = GC;
_linklist = new DL_List<void*>();
_linklist->insbegin( a_link );
_bin = false;
}
// constructor, initialize graph with no contents
// usage: kbGraph *a_graph = new kbGraph();
kbGraph::kbGraph( Bool_Engine* GC )
{
_GC = GC;
_linklist = new DL_List<void*>();
_bin = false;
}
kbGraph::kbGraph( kbGraph* other )
{
_GC = other->_GC;
_linklist = new DL_List<void*>();
_bin = false;
int _nr_of_points = other->_linklist->count();
kbLink* _current = other->GetFirstLink();
kbNode* _last = _current->GetBeginNode();
kbNode* node = new kbNode( _current->GetBeginNode()->GetX(), _current->GetBeginNode()->GetY(), _GC );
kbNode* nodefirst = node;
for ( int i = 0; i < _nr_of_points; i++ )
{
// get the other node on the link
_last = _current->GetOther( _last );
// get the other link on the _last node
_current = _current->Forth( _last );
kbNode* node2 = new kbNode( _current->GetBeginNode()->GetX(), _current->GetBeginNode()->GetY(), _GC );
_linklist->insend( new kbLink( node, node2, _GC ) );
node = node2;
}
_linklist->insend( new kbLink( node, nodefirst, _GC ) );
}
// destructor
// deletes all object of the linklist
kbGraph::~kbGraph()
{
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
//first empty the graph
_LI.delete_all();
}
delete _linklist;
}
kbLink* kbGraph::GetFirstLink()
{
return ( kbLink* ) _linklist->headitem();
}
void kbGraph::Prepare( int intersectionruns )
{
_GC->SetState( "Intersection" );
bool found = true;
int run = 0;
while( run < intersectionruns && found )
{
found = CalculateCrossings( _GC->GetInternalMarge() );
run++;
}
//WHY
// Round(_GC->Get_Grid());
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.foreach_mf( &kbLink::UnMark );// Reset Bin and Mark flag
}
_GC->SetState( "Set group A/B Flags" );
bool dummy = false;
if ( _GC->GetWindingRule() )
ScanGraph2( INOUT, dummy );
ScanGraph2( GENLR, dummy );
// writegraph();
_GC->SetState( "Set operation Flags" );
Set_Operation_Flags();
_GC->SetState( "Remove doubles" );
// Remove the marked links
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while( !_LI.hitroot() )
{
if ( _LI.item()->IsMarked() )
{
delete _LI.item();
_LI.remove();
}
else
_LI++;
}
}
_GC->SetState( "Remove inlinks" );
Remove_IN_Links();
_GC->SetState( "Finished prepare graph" );
}
// x and y of the point will be rounded to the nearest
// xnew=N*grid and ynew=N*grid
void kbGraph::RoundInt( B_INT grid )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
_LI.item()->GetBeginNode()->RoundInt( grid );
_LI.item()->GetEndNode()->RoundInt( grid );
_LI++;
}
}
// rotate graph minus 90 degrees or plus 90 degrees
void kbGraph::Rotate( bool plus90 )
{
B_INT swap;
kbNode* last = NULL;
B_INT neg = -1;
if ( plus90 )
neg = 1;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.mergesort( linkXYsorter );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->GetBeginNode() != last )
{
swap = _LI.item()->GetBeginNode()->GetX();
_LI.item()->GetBeginNode()->SetX( -neg * ( _LI.item()->GetBeginNode()->GetY() ) );
_LI.item()->GetBeginNode()->SetY( neg * swap );
last = _LI.item()->GetBeginNode();
}
_LI++;
}
}
bool kbGraph::RemoveNullLinks()
{
bool graph_is_modified = false;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->GetBeginNode() == _LI.item()->GetEndNode() )
{
_LI.item()->MergeNodes( _LI.item()->GetBeginNode() );
delete _LI.item();
_LI.remove();
graph_is_modified = true;
}
else
_LI++;
}
return ( graph_is_modified );
}
// Add a link to the graph connection with
// other links is through the link his nodes
void kbGraph::AddLink( kbLink *a_link )
{
assert( a_link );
_linklist->insend( a_link );
}
// Add a link to the graph, by giving it two nodes
// the link is then made and added to the graph
void kbGraph::AddLink( kbNode *begin, kbNode *end )
{
assert( begin && end );
assert( begin != end );
AddLink( new kbLink( 0, begin, end, _GC ) );
}
// Checks if there is a zeroline in the graph
bool kbGraph::AreZeroLines( B_INT Marge )
{
bool Found_it = false;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->IsZero( Marge ) )
{
Found_it = true;
break;
}
_LI++;
}
return Found_it;
}
// Delete links that do not fit the condition for given operation
void kbGraph::DeleteNonCond( BOOL_OP operation )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while( !_LI.hitroot() )
{
if ( !_LI.item()->IsMarked( operation ) )
{
delete _LI.item();
_LI.remove();
}
else
_LI++;
}
}
void kbGraph::HandleNonCond( BOOL_OP operation )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while( !_LI.hitroot() )
{
if ( !_LI.item()->IsMarked( operation ) )
{
_LI.item()->SetBeenHere();
_LI.item()->SetGraphNum( -1 );
}
_LI++;
}
}
// All lines in the graph wich have a length < _GC->Get_Marge() will be deleted
//
// input : a marge, standard on _GC->Get_Marge()
// return: true if lines in the graph are deleted
// : false if no lines in the graph are deleted
bool kbGraph::DeleteZeroLines( B_INT Marge )
{
// Is the graph modified ?
bool Is_Modified = false;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
int Processed = _LI.count();
_LI.tohead();
while ( Processed > 0 )
{
Processed--;
if ( _LI.item()->IsZero( Marge ) )
{
// the current link is zero, so make from both nodes one node
// and delete the current link from this graph
_LI.item()->MergeNodes( _LI.item()->GetBeginNode() );
// if an item is deleted the cursor of the list is set to the next
// so no explicit forth is needed
delete _LI.item();
_LI.remove();
// we have to set Processed, because if a zero line is deleted
// another can be made zero by this deletion
Processed = _LI.count();
Is_Modified = true;
if ( _LI.hitroot() )
_LI.tohead();
}
else
_LI++;
if ( _LI.hitroot() )
_LI.tohead();
}
return Is_Modified;
}
// Collects a graph starting at currentnode or attached link
// follow graphs right around.
// since the input node is always a topleft node, we can see on
// a connected link if we or dealing with a hole or NON hole.
// for instance a top link of a hole that is horizontal, always
// is IN above the link and OUT underneath the link.
// this for a non hole the opposite
void kbGraph::CollectGraph( kbNode *current_node, BOOL_OP operation, bool detecthole, int graphnumber, bool& foundholes )
{
kbLink * currentlink;
kbLink *nextlink;
kbNode *next_node;
kbNode *MyFirst;
kbNode *Unlinked;
kbLink *MyFirstlink;
bool Hole;
LinkStatus whatside;
currentlink = current_node->GetNotFlat();
if ( !currentlink )
{
char buf[100];
if ( detecthole )
sprintf( buf, "no NON flat link Collectgraph for operation at %15.3lf , %15.3lf",
double( current_node->GetX() ), double( current_node->GetY() ) );
else
sprintf( buf, "no NON flat link Collectgraph at %15.3lf , %15.3lf",
double( current_node->GetX() ), double( current_node->GetY() ) );
throw Bool_Engine_Error( buf, "Error", 9, 0 );
}
currentlink->SetBeenHere();
if ( detecthole )
Hole = currentlink->IsHole( operation );
else
Hole = currentlink->GetHole(); //simple extract do not detect holes, but use hole flag.
currentlink->Redirect( current_node );
foundholes = Hole || foundholes;
//depending if we have a hole or not
//we take the left node or right node from the selected link (currentlink)
//this MEANS for holes go left around and for non holes go right around
//since the currentlink is already set to binhere, it will not go in that direction
if ( Hole )
{
whatside = IS_LEFT;
if ( currentlink->GetEndNode()->GetX() > current_node->GetX() )
current_node = currentlink->GetEndNode();
}
else
{
whatside = IS_RIGHT;
if ( currentlink->GetEndNode()->GetX() < current_node->GetX() )
current_node = currentlink->GetEndNode();
}
currentlink->Redirect( current_node );
MyFirst = current_node; //remember this as the start
MyFirstlink = currentlink;
next_node = currentlink->GetEndNode();
// If this is a hole, Set as special link, this is the top link of this hole !
// from this link we have to make links to the link above later on.
if ( Hole )
currentlink->SetTopHole( true );
//set also the link as being part of a hole
if ( detecthole )
currentlink->SetHole( Hole );
currentlink->SetGraphNum( graphnumber );
// Walk over links and redirect them. taking most right links around
while ( currentlink != NULL )
{
if ( Hole )
{
nextlink = next_node->GetMost( currentlink, IS_RIGHT, operation );
}
else
{
nextlink = next_node->GetMost( currentlink, IS_LEFT, operation );
// next works too if same is used in CollectGraphLast
//nextlink = next_node->GetMost(currentlink, IS_RIGHT, operation);
}
if ( nextlink == NULL )
{ //END POINT MUST BE EQAUL TO BEGIN POINT
if ( !next_node->Equal( MyFirst, 1 ) )
{
throw Bool_Engine_Error( "no next (endpoint != beginpoint)", "graph", 9, 0 );
//for god sake try this
//nextlink = next_node->GetMost(currentlink, whatside ,operation);
}
}
current_node = next_node;
if ( nextlink != NULL )
{
nextlink->Redirect( current_node );
nextlink->SetBeenHere();
next_node = nextlink->GetEndNode();
if ( current_node->GetNumberOfLinks() > 2 )
{ // replace endnode of currentlink and beginnode of nextlink with new node
Unlinked = new kbNode( current_node, _GC );
currentlink->Replace( current_node, Unlinked );
nextlink->Replace( current_node, Unlinked );
}
if ( detecthole )
nextlink->SetHole( Hole );
nextlink->SetGraphNum( graphnumber );
}
else
{
//close the found graph properly
if ( current_node->GetNumberOfLinks() > 2 )
{ // replace endnode of currentlink and beginnode of nextlink with new node
Unlinked = new kbNode( current_node, _GC );
currentlink->Replace( current_node, Unlinked );
MyFirstlink->Replace( current_node, Unlinked );
}
}
currentlink = nextlink;
}
//END POINT MUST BE EQAUL TO BEGIN POINT
if ( !current_node->Equal( MyFirst, 1 ) )
{
throw Bool_Engine_Error( "in collect graph endpoint != beginpoint", "Error", 9, 0 );
}
}
void kbGraph::CollectGraphLast( kbNode *current_node, BOOL_OP operation, bool detecthole, int graphnumber, bool& foundholes )
{
kbLink * currentlink;
kbLink *nextlink;
kbNode *next_node;
kbNode *MyFirst;
kbNode *Unlinked;
kbLink *MyFirstlink;
bool Hole;
LinkStatus whatside;
currentlink = current_node->GetNotFlat();
if ( !currentlink )
{
char buf[100];
if ( detecthole )
sprintf( buf, "no NON flat link Collectgraph for operation at %15.3lf , %15.3lf",
double( current_node->GetX() ), double( current_node->GetY() ) );
else
sprintf( buf, "no NON flat link Collectgraph at %15.3lf , %15.3lf",
double( current_node->GetX() ), double( current_node->GetY() ) );
throw Bool_Engine_Error( buf, "Error", 9, 0 );
}
currentlink->SetBeenHere();
if ( detecthole )
Hole = currentlink->IsHole( operation );
else
Hole = currentlink->GetHole(); //simple extract do not detect holes, but use hole flag.
currentlink->Redirect( current_node );
foundholes = Hole || foundholes;
//depending if we have a hole or not
//we take the left node or right node from the selected link (currentlink)
//this MEANS for holes go left around and for non holes go right around
//since the currentlink is already set to binhere, it will not go in that direction
if ( Hole )
{
whatside = IS_LEFT;
if ( currentlink->GetEndNode()->GetX() > current_node->GetX() )
current_node = currentlink->GetEndNode();
}
else
{
whatside = IS_RIGHT;
if ( currentlink->GetEndNode()->GetX() < current_node->GetX() )
current_node = currentlink->GetEndNode();
}
currentlink->Redirect( current_node );
MyFirst = current_node; //remember this as the start
MyFirstlink = currentlink;
next_node = currentlink->GetEndNode();
// If this is a hole, Set as special link, this is the top link of this hole !
// from this link we have to make links to the link above later on.
if ( Hole )
currentlink->SetTopHole( true );
currentlink->SetGraphNum( graphnumber );
// Walk over links and redirect them. taking most right links around
while ( currentlink != NULL )
{
if ( Hole )
{
if ( currentlink->GetHoleLink() )
{
//in case we entered the hole via the hole link just now, we follow the hole.
//This is taking as many holes as possible ( most right around)
nextlink = next_node->GetMostHole( currentlink, IS_RIGHT , operation, false );
if ( !nextlink ) // hole done?
//if we did get to this hole via a holelink?, then we might now be on the return link.
//BTW it is also possible that holes are already found via a non linked hole path,
//in that case, we did go to the HoleLink here, and directly return on the other holelink.
nextlink = next_node->GetHoleLink( currentlink, IS_RIGHT, true, operation );
if ( !nextlink )
{
//we did get to this hole via a holelink and we are on the returning holelink.
//So we left the hole collection, and continue with contours.
//Most Right is needed!
nextlink = next_node->GetMost( currentlink, IS_RIGHT, operation );
}
}
else
{
nextlink = next_node->GetMostHole( currentlink, IS_RIGHT, operation ); // other holes first
if ( !nextlink )
nextlink = next_node->GetHoleLink( currentlink, IS_RIGHT, true, operation ); // other linked holes first
if ( !nextlink )
{
//We are leaving the hole.
//So we left the hole collection, and continue with contours.
//Most Right is needed!
nextlink = next_node->GetMost( currentlink, IS_RIGHT, operation );
}
}
}
else
{
//nextlink = next_node->GetMost( currentlink, IS_RIGHT, operation );
//if ( !nextlink )
//a hole link is preferred above a normal link. If not no holes would be linked in anyway.
nextlink = next_node->GetHoleLink( currentlink, IS_RIGHT, true, operation );
if ( !nextlink )
//also if we can get to a hole directly within a contour, that is better (get as much as possible)
nextlink = next_node->GetMostHole( currentlink, IS_RIGHT, operation );
if ( !nextlink )
//if non of the above, we are still on the contour and take as must as possible to the left.
//Like that we take as many contour togethere as possible.
nextlink = next_node->GetMost( currentlink, IS_LEFT, operation );
// next works too if same is used in CollectGraphLast
//nextlink = next_node->GetMost(currentlink, IS_RIGHT, operation);
}
if ( nextlink == NULL )
{ //END POINT MUST BE EQAUL TO BEGIN POINT
if ( !next_node->Equal( MyFirst, 1 ) )
{
throw Bool_Engine_Error( "no next (endpoint != beginpoint)", "graph", 9, 0 );
//for god sake try this
//nextlink = next_node->GetMost(currentlink, whatside, operation);
}
}
else
{
// when holes are already know, use the hole information to
// go left are right around.
Hole = nextlink->GetHole() || nextlink->GetHoleLink();
}
current_node = next_node;
if ( nextlink != NULL )
{
nextlink->Redirect( current_node );
nextlink->SetBeenHere();
next_node = nextlink->GetEndNode();
if ( current_node->GetNumberOfLinks() > 2 )
{ // replace endnode of currentlink and beginnode of nextlink with new node
Unlinked = new kbNode( current_node, _GC );
currentlink->Replace( current_node, Unlinked );
nextlink->Replace( current_node, Unlinked );
}
nextlink->SetGraphNum( graphnumber );
}
else
{
//close the found graph properly
if ( current_node->GetNumberOfLinks() > 2 )
{ // replace endnode of currentlink and beginnode of nextlink with new node
Unlinked = new kbNode( current_node, _GC );
currentlink->Replace( current_node, Unlinked );
MyFirstlink->Replace( current_node, Unlinked );
}
}
currentlink = nextlink;
}
//END POINT MUST BE EQAUL TO BEGIN POINT
if ( !current_node->Equal( MyFirst, 1 ) )
{
throw Bool_Engine_Error( "in collect graph endpoint != beginpoint", "Error", 9, 0 );
}
}
//==============================================================================
//==============================================================================
// Extract bi-directional graphs from this graph
// Mark the graphs also as being a hole or not.
void kbGraph::Extract_Simples( BOOL_OP operation, bool detecthole, bool& foundholes )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.empty() ) return;
kbNode *begin;
int graphnumber = 1;
_LI.mergesort( linkYXtopsorter );
_LI.tohead();
while ( true )
{
begin = GetMostTopLeft( &_LI ); // from all the most Top nodes,
// take the most left one
// to most or not to most, that is the question
if ( !begin )
break;
try // collect the graph
{
if ( detecthole )
CollectGraph( begin, operation, detecthole, graphnumber++, foundholes );
else
//CollectGraph( begin,operation,detecthole,graphnumber++, foundholes );
CollectGraphLast( begin, operation, detecthole, graphnumber++, foundholes );
}
catch ( Bool_Engine_Error & error )
{
_GC->info( error.GetErrorMessage(), "error" );
throw error;
}
}
}
void kbGraph::Split( kbGraphList* partlist )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.empty() ) return;
kbGraph *part = NULL;
int graphnumber = 0;
//sort the graph on graphnumber
_LI.mergesort( linkGraphNumsorter );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->GetGraphNum() > 0 && graphnumber != _LI.item()->GetGraphNum() )
{
graphnumber = _LI.item()->GetGraphNum();
part = new kbGraph( _GC );
partlist->insend( part );
}
kbLink* tmp = _LI.item();
if ( _LI.item()->GetGraphNum() > 0 )
{
part->AddLink( tmp );
}
else
{
delete tmp;
}
_LI.remove();
}
}
bool kbGraph::GetBeenHere()
{
return _bin;
}
// return total number of links in this graph
int kbGraph::GetNumberOfLinks()
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
return _LI.count();
}
//for all operations set the operation flags for the links
//based on the Group_Left_Right values
void kbGraph::Set_Operation_Flags()
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while( !_LI.hitroot() )
{
_LI.item()->SetLineTypes();
_LI++;
}
}
// Remove unused (those not used for any operation) links
void kbGraph::Remove_IN_Links()
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
for ( int t = _LI.count() ; t > 0; t-- )
{
// Is this link not used for any operation?
if ( _LI.item()->IsUnused() )
{
delete _LI.item();
_LI.remove();
}
else
_LI++;
}
}
void kbGraph::ResetBinMark()
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.empty() ) return;
_LI.foreach_mf( &kbLink::UnMark );//reset bin and mark flag of each link
}
void kbGraph::ReverseAllLinks()
{
kbNode * dummy;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
// swap the begin- and endnode of the current link
dummy = _LI.item()->GetBeginNode();
_LI.item()->SetBeginNode( _LI.item()->GetEndNode() );
_LI.item()->SetEndNode( dummy );
_LI++;
}
}
void kbGraph::SetBeenHere( bool value )
{
_bin = value;
}
// ReSet the flags of the links
void kbGraph::Reset_flags()
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.foreach_mf( &kbLink::Reset_flags );
}
// ReSet the bin and mark flag of the links
void kbGraph::Reset_Mark_and_Bin()
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.foreach_mf( &kbLink::UnMark );//reset bin and mark flag of each link
}
// Set the group of the links to the same as newgroup
void kbGraph::SetGroup( GroupType newgroup )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
_LI.item()->SetGroup( newgroup );
_LI++;
}
}
// Set the number of the links to the same as newnr
void kbGraph::SetNumber( const int newnr )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
_LI.item()->SetGraphNum( newnr );
_LI++;
}
}
// This function will simplify a graph with the following rules
//
// This are the rules for symplifying the graphs
// 1. The following point is the same as the current one
// 2. The point after the following point is the same as the current one
// 3. The point after the following point lies on the same line as the current
//
// input : a marge
// return: true if graph is modified
// : false if graph is NOT simplified
bool kbGraph::Simplify( B_INT Marge )
{
bool graph_is_modified = false;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
int Processed = _LI.count();
_LI.foreach_mf( &kbLink::UnMark );//reset bin and mark flag of each link
_LI.tohead();
GroupType mygroup = _LI.item()->Group();
// All items must be processed
while ( Processed > 0 )
{
// Gives the number of items to process
Processed--;
// Check if line is marked
// Links will be marked during the process
if ( _LI.item()->IsMarked() )
{
delete _LI.item();
_LI.remove();
graph_is_modified = true;
Processed = _LI.count();
if ( _LI.hitroot() )
_LI.tohead();
continue;
}
// Line is not marked, check if line is zero
if ( _LI.item()->IsZero( Marge ) )
{
_LI.item()->MergeNodes( _LI.item()->GetBeginNode() );
delete _LI.item();
_LI.remove();
graph_is_modified = true;
Processed = _LI.count();
if ( _LI.hitroot() )
_LI.tohead();
continue;
}
// begin with trying to simplify the link
{
// Line is not marked, not zero, so maybe it can be simplified
bool virtual_link_is_modified;
kbNode *new_begin, *new_end, *a_node;
kbLink *a_link;
_LI.item()->Mark();
new_begin = _LI.item()->GetBeginNode();
new_end = _LI.item()->GetEndNode();
// while virtual link is modified
do
{
virtual_link_is_modified = false;
// look in the previous direction
if ( ( a_link = new_begin->GetPrevLink() ) != NULL )
{
a_node = a_link->GetBeginNode();
if ( a_node->Simplify( new_begin, new_end, Marge ) )
{
new_begin->GetPrevLink()->Mark();
new_begin = a_node;
virtual_link_is_modified = true;
}
}
// look in the next direction
if ( ( a_link = new_end->GetNextLink() ) != NULL )
{
a_node = a_link->GetEndNode();
if ( a_node->Simplify( new_begin, new_end, Marge ) )
{
new_end->GetNextLink()->Mark();
new_end = a_node;
virtual_link_is_modified = true;
}
}
graph_is_modified = ( bool ) ( graph_is_modified || virtual_link_is_modified );
}
while ( virtual_link_is_modified );
// was the link simplified
if ( ( _LI.item()->GetBeginNode() != new_begin ) ||
( _LI.item()->GetEndNode() != new_end ) )
{
// YES !!!!!
int number = _LI.item()->GetGraphNum();
delete _LI.item();
_LI.remove();
if ( _LI.hitroot() )
_LI.tohead();
kbLink *newlink = new kbLink( number, new_begin, new_end, _GC );
newlink->SetGroup( mygroup );
_LI.insend( newlink );
Processed = _LI.count();
graph_is_modified = true;
continue;
}
_LI.item()->UnMark();
} // end of try to simplify
_LI++;
if ( _LI.hitroot() )
_LI.tohead();
}//end while all processed
return graph_is_modified;
}
/*
// This function will smoothen a graph with the following rules
//
// 0. Process graphs with more than 3 links only. (while more than 3)
// Otherwise some objects may end-up as lines or disappear completely.
// 1.
// a. ? Does begin-node lay on line(prevline.beginnode,endnode)
// -> merge beginnode to endnode
// b. ? Does end-node lay on line(beginnode,nextline.endnode)
// -> merge endnode to beginnode
// 2.
// a. ? Is distance between prevline.beginnode and endnode to short
// -> merge beginnode to endnode
// b. ? Is distance between beginnode and nextline.endnode to short
// -> merge endnode to beginnode
// 3.
// a. ? Does (this)beginnode lay in area of nextline
// AND does cross-node lay on nextline
// -> move endnode to crossing of prevline and nextline
// b. ? Does (this)endnode lay in area of prevline
// AND does cross-node lay on prevline
// -> move beginnode to crossing of prevline and nextline
// 4.
// ? Is this link too short
// ? Is prevline shorter than nextline
// Y -> ? Is prevlink shorter than maxlength
// -> merge endnode to beginnode
// N -> ? Is nextlink shorter than maxlength
// -> merge endnode to beginnode
//
//
// Types of glitches / lines to remove :
//
// \ / \ / \ /
// Z---A---B OR Z-------B---A => Z-------B
//
// (1)
//
// ----A C---- => ----A-----C----
// \ /
// (2) \ /
// B
//
// ---Z ---Z
// \ \
// (3) \ \
// \ B----------C-- => A---B----------C--
// \ /
// A
//
// --Z---A --Z__
// \ -__
// (4) B------------C-- => B------------C--
//
// linkLsorter(L1,L2)
// ret:
// +1 L1 < L2
// 0 L1 == L2
// -1 L1 > L2
//
*/
bool kbGraph::Smoothen( B_INT Marge )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.count() <= 3 ) // Don't modify it
return false;
kbNode *Z, *A, *B, *C, *cross_node = new kbNode( _GC );
kbLink *prevlink, *nextlink, *thislink;
kbLine prevline( _GC ), nextline( _GC ), thisline( _GC );
kbLine prevhelp( _GC ), nexthelp( _GC );
kbLink LZB( new kbNode( _GC ), new kbNode( _GC ), _GC ),
LAC( new kbNode( _GC ), new kbNode( _GC ), _GC );
double distance = 0;
double prevdist, nextdist;
bool doprev, donext;
bool graph_is_modified = false;
bool kill = false; // for first instance
_LI.tohead();
int todo = _LI.count();
thislink = _LI.item();
B = thislink->GetEndNode();
nextlink = thislink->Forth( B );
// Type 1
while ( todo > 0 )
{
if ( kill == true )
{
// remove link from graph
_LI.toitem( thislink );
graph_is_modified = true;
delete _LI.item();
_LI.remove();
kill = false;
thislink = nextlink;
todo--;
if ( _LI.count() < 3 )
break;
}
A = thislink->GetBeginNode();
B = thislink->GetEndNode();
if ( A->ShorterThan( B, 1 ) )
{
A->Merge( B );
kill = true;
continue;
}
Z = thislink->Forth( A )->GetBeginNode();
C = thislink->Forth( B )->GetEndNode();
thisline.Set( thislink );
thisline.CalculateLineParameters();
nextlink = thislink->Forth( B );
if ( thisline.PointInLine( Z, distance, 0.0 ) == ON_AREA )
{ // Z--A--B => Z--B Merge this to previous
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
else if ( thisline.PointInLine( C, distance, 0.0 ) == ON_AREA )
{ // A--B--C => A--C Merge this to next
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
thislink = nextlink;
todo--;
}
kill = false;
todo = _LI.count();
_LI.mergesort( linkLsorter );
_LI.tohead();
while ( todo > 0 )
{
if ( kill == true )
{
delete _LI.item();
_LI.remove();
graph_is_modified = true;
kill = false;
//mergesort(linkLsorter);
_LI.mergesort( linkLsorter );
_LI.tohead();
todo = _LI.count();
if ( todo < 3 ) // A polygon, at least, has 3 sides
break;
}
// Keep this order!
thislink = _LI.item();
A = thislink->GetBeginNode();
B = thislink->GetEndNode();
prevlink = thislink->Forth( A );
nextlink = thislink->Forth( B );
Z = prevlink->GetBeginNode();
C = nextlink->GetEndNode();
if ( A->ShorterThan( B, 1 ) )
{
A->Merge( B );
kill = true;
continue;
}
prevline.Set( prevlink );
prevline.CalculateLineParameters();
nextline.Set( nextlink );
nextline.CalculateLineParameters();
// Type 2
if ( B->ShorterThan( Z, Marge ) )
{ // Z--A--B => Z--B Merge this to previous
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
else if ( A->ShorterThan( C, Marge ) )
{ // A--B--C => A--C Merge this to next
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
*LZB.GetBeginNode() = *Z;
*LZB.GetEndNode() = *B;
*LAC.GetBeginNode() = *A;
*LAC.GetEndNode() = *C;
prevhelp.Set( &LZB );
nexthelp.Set( &LAC );
prevhelp.CalculateLineParameters();
nexthelp.CalculateLineParameters();
// Type 4
doprev = bool( prevhelp.PointInLine( A, prevdist, ( double )Marge ) == IN_AREA );
donext = bool( nexthelp.PointInLine( B, nextdist, ( double )Marge ) == IN_AREA );
doprev = bool( B->ShorterThan( Z, _GC->GetInternalMaxlinemerge() ) && doprev );
donext = bool( A->ShorterThan( C, _GC->GetInternalMaxlinemerge() ) && donext );
if ( doprev && donext )
{
if ( fabs( prevdist ) <= fabs( nextdist ) )
thislink->MergeNodes( B ); // remove A
else
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
else if ( doprev )
{
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
else if ( donext )
{
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
thisline.Set( thislink );
thisline.CalculateLineParameters();
// Type 1
if ( thisline.PointInLine( Z, distance, 0.0 ) == ON_AREA )
{ // Z--A--B => Z--B Merge this to previous
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
else if ( thisline.PointInLine( C, distance, 0.0 ) == ON_AREA )
{ // A--B--C => A--C Merge this to next
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
// Type 3
if ( nextline.PointInLine( A, distance, ( double ) Marge ) == IN_AREA )
{
if ( nextline.Intersect2( cross_node, &prevline ) )
{
if ( nextline.PointInLine( cross_node, distance, 0.0 ) == IN_AREA )
{
B->Set( cross_node );
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
else
{
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
}
else
{
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
}
// Type 3
if ( prevline.PointInLine( B, distance, ( double )Marge ) == IN_AREA )
{
if ( prevline.Intersect2( cross_node, &nextline ) )
{
if ( prevline.PointInLine( cross_node, distance, 0.0 ) == IN_AREA )
{
A->Set( cross_node );
thislink->MergeNodes( A ); // remove B
kill = true;
continue;
}
else
{
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
}
else
{
thislink->MergeNodes( B ); // remove A
kill = true;
continue;
}
}
todo--;
_LI++;
} // end: while all processed
delete cross_node;
return graph_is_modified;
}
// Give the graphnumber of the first link in the graphlist
int kbGraph::GetGraphNum()
{
return ( ( kbLink* )_linklist->headitem() )->GetGraphNum();
}
// get the node with the highest Y value
kbNode* kbGraph::GetTopNode()
{
B_INT max_Y = MAXB_INT;
kbNode* result;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( !( _LI.item()->GetBeginNode()->GetY() < max_Y ) )
break;
_LI++;
}
result = _LI.item()->GetBeginNode();
return result;
}
// THE GRAPH MUST be SORTED before using this function
// mergesort(linkYXtopsorter);
// Get the mostleft top node from the graph for which the link flag is not set yet
kbNode* kbGraph::GetMostTopLeft( TDLI<kbLink>* _LI )
{
while ( !_LI->hitroot() )
{
if ( !_LI->item()->BeenHere() )
{
kbLink * a = _LI->item();
//find the top node of this link (sorted on top allready)
if ( a->GetBeginNode()->GetY() > a->GetEndNode()->GetY() )
return( a->GetBeginNode() );
if ( a->GetBeginNode()->GetY() < a->GetEndNode()->GetY() )
return( a->GetEndNode() );
else
return( a->GetBeginNode() );
}
( *_LI )++;
}
return NULL;
}
// Take the linkslist over from a other graph
// The linklist of the other graph will be empty afterwards
void kbGraph::TakeOver( kbGraph *other )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.takeover( other->_linklist );
}
// calculate crossing with scanbeams
bool kbGraph::CalculateCrossings( B_INT Marge )
{
// POINT <==> POINT
_GC->SetState( "Node to Node" );
bool found = false;
bool dummy = false;
found = Merge_NodeToNode( Marge ) != 0;
if ( _linklist->count() < 3 )
return found;
// POINT <==> LINK
_GC->SetState( "Node to kbLink 0" );
found = ScanGraph2( NODELINK, dummy ) != 0 || found;
_GC->SetState( "Rotate -90" );
Rotate( false );
_GC->SetState( "Node to kbLink -90" );
found = ScanGraph2( NODELINK, dummy ) != 0 || found;
_GC->SetState( "Rotate +90" );
Rotate( true );
// LINK <==> LINK
_GC->SetState( "intersect" );
found = ScanGraph2( LINKLINK, dummy ) != 0 || found;
/*
if (!checksort())
{ {
TDLI<kbLink> _LI=TDLI<kbLink>(_linklist);
_LI.mergesort(linkXYsorter);
}
writeintersections();
writegraph(true);
}
*/
// Rotate(false);
// _GC->SetState("kbLink to kbLink -90");
// ScanGraph2(LINKLINK);
// Rotate(true);
writegraph( true );
_GC->Write_Log( "Node to Node" );
_GC->SetState( "Node to Node" );
found = Merge_NodeToNode( Marge ) != 0 || found;
writegraph( true );
return found;
}
// neem de nodes die binnen de margeafstand bij elkaar liggen samen RICHARD
int kbGraph::Merge_NodeToNode( B_INT Marge )
{
//aantal punten dat verplaatst is
int merges = 0;
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
//unmark all links; markflag wordt gebruikt om aan te geven
//of een link (eigenlijk beginnode ervan) al verwerkt is
_LI.foreach_mf( &kbLink::UnMark );
//sort links on x value of beginnode
_LI.mergesort( linkXYsorter );
//extra iterator voor doorlopen links in graph
{
TDLI<kbLink> links = TDLI<kbLink>( _linklist );
kbNode *nodeOne, *nodeTwo;
//verwerk alle links (alle (begin)nodes)
for( _LI.tohead(); !_LI.hitroot(); _LI++ )
{
nodeOne = _LI.item()->GetBeginNode();
// link (beginnode) al verwerkt?
if( !_LI.item()->IsMarked() )
{
// wordt verwerkt dus markeer
_LI.item()->Mark();
// doorloop alle links vanaf huidige tot link buiten marge
links.toiter( &_LI );links++;
while ( !links.hitroot() )
{
nodeTwo = links.item()->GetBeginNode();
// marked?
if( !links.item()->IsMarked() )
{
// x van beginnode vd link binnen marge?
if( babs( nodeOne->GetX() - nodeTwo->GetX() ) <= Marge )
{
// y van beginnode vd link binnen marge?
// zijn twee node-object referenties wel verschillend?
if( babs( nodeOne->GetY() - nodeTwo->GetY() ) <= Marge &&
( !( nodeOne == nodeTwo ) )
)
{
links.item()->Mark();
nodeOne->Merge( nodeTwo );
merges++;
}//y binnen marge en niet zelfde node
}//x binnen marge?
else
{
// link valt buiten marge; de rest vd links
// dus ook (omdat lijst gesorteerd is)
links.totail();
}
}//marked?
links++;
}//current -> ongeldig
}//verwerkt?
}//all links
}//om de extra iterator te verwijderen
}
RemoveNullLinks();
return merges;
}
int kbGraph::ScanGraph2( SCANTYPE scantype, bool& holes )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
int found = 0;
//sort links on x and y value of beginnode
_LI.mergesort( linkXYsorter );
writegraph( false );
//bin flag is used in scanbeam so reset
_LI.foreach_mf( &kbLink::SetNotBeenHere );
ScanBeam* scanbeam = new ScanBeam( _GC );
kbNode* _low;
kbNode* _high;
_LI.tohead();
while ( !_LI.attail() )
{
_low = _LI.item()->GetBeginNode();
//find new links for the new beam and remove the old links
if ( scanbeam->FindNew( scantype, &_LI, holes ) )
found++;
//find a new low node, this should be a node not eqaul to the current _low
do
{ _LI++;}
while ( !_LI.hitroot() && ( _low == _LI.item()->GetBeginNode() ) );
if ( _LI.hitroot() )
//if the last few links share the same beginnode
//we arive here
break;
else
_high = _LI.item()->GetBeginNode();
scanbeam->SetType( _low, _high );
if ( scanbeam->RemoveOld( scantype, &_LI, holes ) )
found++;
}
delete scanbeam;
return found;
}
/*
// scanbeam->writebeam();
if (j%100 ==0)
{
long x;
long y;
char buf[80];
x=(long)_lowlink->GetBeginNode()->GetX();
y=(long)_lowlink->GetBeginNode()->GetY();
sprintf(buf," x=%I64d , y=%I64d here %I64d",x,y,scanbeam->count());
_GC->SetState(buf);
scanbeam->writebeam();
}
writegraph(false);
if (!checksort())
{
double x=_lowlink->GetBeginNode()->GetX();
checksort();
}
_LI++;
}
}
delete scanbeam;
return 0;
}
if (!checksort())
{
x=_lowlink->GetBeginNode()->GetX();
checksort();
}
if (x >= -112200)
{
// writegraph(true);
// scanbeam->writebeam();
}
*/
//=============================== Global Functions =============================
// Sorts the links on the X values
int linkXYsorter( kbLink *a, kbLink* b )
{
if ( a->GetBeginNode()->GetX() < b->GetBeginNode()->GetX() )
return( 1 );
if ( a->GetBeginNode()->GetX() > b->GetBeginNode()->GetX() )
return( -1 );
//they are eqaul in x
if ( a->GetBeginNode()->GetY() < b->GetBeginNode()->GetY() )
return( -1 );
if ( a->GetBeginNode()->GetY() > b->GetBeginNode()->GetY() )
return( 1 );
//they are eqaul in y
return( 0 );
}
// Sorts the links on the Y value of the beginnode
int linkYXsorter( kbLink *a, kbLink* b )
{
if ( a->GetBeginNode()->GetY() > b->GetBeginNode()->GetY() )
return( 1 );
if ( a->GetBeginNode()->GetY() < b->GetBeginNode()->GetY() )
return( -1 );
if ( a->GetBeginNode()->GetX() > b->GetBeginNode()->GetX() )
return( -1 );
if ( a->GetBeginNode()->GetX() < b->GetBeginNode()->GetX() )
return( 1 );
return( 0 );
}
// The sort function for sorting graph from shortest to longest (_l1 < _l2)
int linkLsorter( kbLink *_l1, kbLink* _l2 )
{
B_INT dx1, dx2, dy1, dy2;
dx1 = ( _l1->GetEndNode()->GetX() - _l1->GetBeginNode()->GetX() );
dx1 *= dx1;
dy1 = ( _l1->GetEndNode()->GetY() - _l1->GetBeginNode()->GetY() );
dy1 *= dy1;
dx2 = ( _l2->GetEndNode()->GetX() - _l2->GetBeginNode()->GetX() );
dx2 *= dx2;
dy2 = ( _l2->GetEndNode()->GetY() - _l2->GetBeginNode()->GetY() );
dy2 *= dy2;
dx1 += dy1; dx2 += dy2;
if ( dx1 > dx2 )
return( -1 );
if ( dx1 < dx2 )
return( 1 );
return( 0 );
}
// The sort function for the links in a graph (a.topnode < b.topnode)
// if the two links lay with the top nodes on eachother the most left will be selected
int linkYXtopsorter( kbLink *a, kbLink *b )
{
if ( bmax( a->GetBeginNode()->GetY(), a->GetEndNode()->GetY() ) < bmax( b->GetBeginNode()->GetY(), b->GetEndNode()->GetY() ) )
return -1;
if ( bmax( a->GetBeginNode()->GetY(), a->GetEndNode()->GetY() ) > bmax( b->GetBeginNode()->GetY(), b->GetEndNode()->GetY() ) )
return 1;
//equal
if ( bmin( a->GetBeginNode()->GetX(), a->GetEndNode()->GetX() ) < bmin( b->GetBeginNode()->GetX(), b->GetEndNode()->GetX() ) )
return -1;
if ( bmin( a->GetBeginNode()->GetX(), a->GetEndNode()->GetX() ) > bmin( b->GetBeginNode()->GetX(), b->GetEndNode()->GetX() ) )
return 1;
return 0;
}
// The sort function for sorting graph from shortest to longest (_l1 < _l2)
int linkGraphNumsorter( kbLink *_l1, kbLink* _l2 )
{
if ( _l1->GetGraphNum() > _l2->GetGraphNum() )
return( -1 );
if ( _l1->GetGraphNum() < _l2->GetGraphNum() )
return( 1 );
return( 0 );
}
// Perform an operation on the graph
void kbGraph::Boolean( BOOL_OP operation, kbGraphList* Result )
{
_GC->SetState( "Performing Operation" );
// At this moment we have one graph
// step one, split it up in single graphs, and mark the holes
// step two, make one graph again and link the holes
// step three, split up again and dump the result in Result
_GC->SetState( "Extract simples first " );
ResetBinMark();
DeleteNonCond( operation );
HandleNonCond( operation );
bool foundholes = false;
try
{
WriteGraphKEY( _GC );
writegraph( true );
Extract_Simples( operation, true, foundholes );
}
catch ( Bool_Engine_Error & error )
{
throw error;
}
// now we will link all the holes in de graphlist
// By the scanbeam method we will search all the links that are marked
// as topleft link of a the hole polygon, when we find them we will get the
// closest link, being the one higher in the beam.
// Next we will create a link and nodes toceoonect the hole into it outside contour
// or other hole.
_GC->SetState( "Linking Holes" );
if ( _linklist->count() == 0 )
//extract simples did leaf an empty graph
//so we are ready
return;
if ( foundholes && _GC->GetLinkHoles() )
{
//the first extract simples introduced nodes at the same location that are not merged.
//e.g. Butterfly polygons as two seperate polygons.
//The scanlines can not cope with this, so merge them, and later extract one more time.
Merge_NodeToNode( 0 );
#if KBOOL_LOG == 1
//_GC->SetLog( true );
_GC->Write_Log( "LINKHOLES\n" );
#endif
writegraph( false );
//link the holes into the non holes if there are any.
bool holes = false;
ScanGraph2( LINKHOLES, holes );
WriteGraphKEY( _GC );
writegraph( true );
if ( holes )
{
//to delete extra points
//those extra points are caused by link holes
//and are eqaul ( the smallest number in integer is 1 )
DeleteZeroLines( 1 );
_GC->SetState( "extract simples last" );
ResetBinMark();
HandleNonCond( operation );
DeleteNonCond( operation );
Extract_Simples( operation, false, foundholes );
}
}
//writegraph( false );
Split( Result );
}
// Perform an correction on the graph
void kbGraph::Correction( kbGraphList* Result, double factor )
{
// At this moment we have one graph
// step one, split it up in single graphs, and mark the holes
// step two, make one graph again and link the holes
// step three, split up again and dump the result in Result
_GC->SetState( "Extract simple graphs" );
//extract the (MERGE or OR) result from the graph
if ( Simplify( _GC->GetGrid() ) )
if ( GetNumberOfLinks() < 3 )
return;
kbGraph* original = new kbGraph( _GC );
{
if ( _linklist->empty() ) return;
kbLink* _current = GetFirstLink();
kbNode *_first = new kbNode( _current->GetBeginNode(), _GC );
kbNode *_last = _current->GetBeginNode();
kbNode *_begin = _first;
kbNode *_end = _first;
int _nr_of_points = GetNumberOfLinks();
for ( int i = 1; i < _nr_of_points; i++ )
{
// get the other node on the link
_last = _current->GetOther( _last );
// make a node from this point
_end = new kbNode( _last, _GC );
// make a link between begin and end
original->AddLink( _begin, _end );
_begin = _end;
_current = _current->Forth( _last );
}
// make a link between the _begin and the first to close the graph
original->AddLink( _begin, _first );
}
SetNumber( 1 );
SetGroup( GROUP_A );
Prepare( 1 );
ResetBinMark();
//DeleteNonCond(BOOL_OR);
HandleNonCond( BOOL_OR );
bool foundholes = false;
Extract_Simples( BOOL_OR, true, foundholes );
Split( Result );
//Result contains the separate boundaries and holes
//ring creation should never be alternate rule, since it overlaps.
//So temprarely modify it.
bool rule = _GC->GetWindingRule();
_GC->SetWindingRule( true );
_GC->SetState( "Create rings" );
//first create a ring around all simple graphs
{
TDLI<kbGraph> IResult = TDLI<kbGraph>( Result );
kbGraphList *_ring = new kbGraphList( _GC );
{
//put into one graphlist
IResult.tohead();
int i;
int n = IResult.count();
for ( i = 0;i < n;i++ )
{
{
IResult.item()->MakeClockWise();
IResult.item()->CreateRing_fast( _ring, fabs( factor ) );
// IResult.item()->CreateRing(_ring,fabs(factor));
}
delete( IResult.item() );
IResult.remove();
//move ring graphlist to result
while ( !_ring->empty() )
{
//add to end
( ( kbGraph* )_ring->headitem() )->MakeClockWise();
IResult.insend( ( kbGraph* )_ring->headitem() );
_ring->removehead();
}
}
}
delete _ring;
//IResult contains all rings
//prepare the graphs for extracting the links of a certain operation
//set original graphlist to groupA and ring to groupB
int i = 2;
IResult.tohead();
while ( !IResult.hitroot() )
{
IResult.item()->Reset_flags();
IResult.item()->SetGroup( GROUP_B );
IResult.item()->SetNumber( i );
i++;
IResult++;
}
}
//a ring shape can overlap itself, for alternate filling this is problem.
//doing a merge in winding rule makes this oke, since overlap is removed by it.
if ( !rule ) //alternate rule?
{
Prepare( 1 );
Boolean( BOOL_OR, Result );
TDLI<kbGraph> IResult = TDLI<kbGraph>( Result );
//IResult contains all rings
//prepare the graphs for extracting the links of a certain operation
//set original graphlist to groupA and ring to groupB
int i = 2;
IResult.tohead();
while ( !IResult.hitroot() )
{
IResult.item()->Reset_flags();
IResult.item()->SetGroup( GROUP_B );
IResult.item()->SetNumber( i );
i++;
IResult++;
}
}
//restore filling rule
_GC->SetWindingRule( rule );
TakeOver( original );
Reset_flags();
SetNumber( 1 );
SetGroup( GROUP_A );
Result->MakeOneGraph( this ); // adds all graph its links to original
// Result will be empty afterwords
//merge ring with original shapes for positive correction else subtract ring
//calculate intersections etc.
//SINCE correction will calculate intersections between
//ring and original _GC->Get_Marge() must be set a lot smaller then factor
//during the rest of this routine
//else wierd effects will be the result.
double Backup_Marge = _GC->GetMarge();
if ( _GC->GetInternalMarge() > fabs( factor / 100 ) )
{
_GC->SetInternalMarge( ( B_INT ) fabs( factor / 100 ) );
//less then 1 is usless since all coordinates are integers
if ( _GC->GetInternalMarge() < 1 )
_GC->SetInternalMarge( 1 );
}
Prepare( 1 );
_GC->SetState( "Add/Substract rings" );
if ( factor > 0 )
Boolean( BOOL_OR, Result );
else
Boolean( BOOL_A_SUB_B, Result );
_GC->SetMarge( Backup_Marge );
//the result of the graph correction is in Result
delete original;
}
// Perform an operation on the graph
void kbGraph::MakeRing( kbGraphList* Result, double factor )
{
bool rule = _GC->GetWindingRule();
_GC->SetWindingRule( true );
// At this moment we have one graph
// step one, split it up in single graphs, and mark the holes
// step two, make one graph again and link the holes
// step three, split up again and dump the result in Result
_GC->SetState( "Extract simple graphs" );
//extract the (MERGE or OR) result from the graph
SetNumber( 1 );
Prepare( 1 );
ResetBinMark();
//DeleteNonCond(BOOL_OR);
HandleNonCond( BOOL_OR );
bool foundholes = false;
Extract_Simples( BOOL_OR, true, foundholes );
Split( Result );
//Iresult contains the separate boundaries and holes
//make a correction on the boundaries factor
//make a correction on the holes -factor
_GC->SetState( "Create rings" );
//first create a ring around all simple graphs
TDLI<kbGraph> IResult = TDLI<kbGraph>( Result );
kbGraphList *_ring = new kbGraphList( _GC );
{
IResult.tohead();
int i;
int n = IResult.count();
for ( i = 0;i < n;i++ )
{
{
IResult.item()->MakeClockWise();
IResult.item()->CreateRing_fast( _ring, fabs( factor ) );
}
delete( IResult.item() );
IResult.remove();
//move ring graphlist to result
while ( !_ring->empty() )
{
//add to end
( ( kbGraph* )_ring->headitem() )->MakeClockWise();
IResult.insend( ( kbGraph* )_ring->headitem() );
_ring->removehead();
}
}
}
delete _ring;
_GC->SetWindingRule( rule );
}
//create a ring shapes on every edge of the graph
void kbGraph::CreateRing( kbGraphList *ring, double factor )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
while( !_LI.hitroot() )
{
kbGraph * shape = new kbGraph( _GC );
//generate shape around link
shape->Make_Rounded_Shape( _LI.item(), factor );
ring->insbegin( shape );
_LI++;
}
}
//create a ring shapes on every edge of the graph
void kbGraph::CreateRing_fast( kbGraphList *ring, double factor )
{
kbNode * begin;
kbLink* currentlink;
kbLine currentline( _GC );
kbLine firstline( _GC );
kbLink* nextlink;
kbLine nextline( _GC );
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.foreach_mf( &kbLink::UnMark );//reset bin and mark flag of each link
_LI.mergesort( linkYXsorter );
_LI.tohead();
begin = GetMostTopLeft( &_LI ); // from all the most Top nodes,
// take the most left one
}
if ( !begin )
return;
currentlink = begin->GetIncomingLink();
currentline.Set( currentlink );
currentline.CalculateLineParameters();
nextlink = begin->GetOutgoingLink();
nextline.Set( nextlink );
nextline.CalculateLineParameters();
firstline.Set( nextlink );
firstline.CalculateLineParameters();
while ( nextlink )
{
kbGraph * shape = new kbGraph( _GC );
{
kbNode* _last_ins_left = 0;
kbNode* _last_ins_right = 0;
currentline.Create_Begin_Shape( &nextline, &_last_ins_left, &_last_ins_right, factor, shape );
while( true )
{
currentline = nextline;
currentlink = nextlink;
currentlink->SetBeenHere();
nextlink = currentlink->GetEndNode()->Follow( currentlink );
if ( nextlink )
{
nextline.Set( nextlink );
nextline.CalculateLineParameters();
if ( !currentline.Create_Ring_Shape( &nextline, &_last_ins_left, &_last_ins_right, factor, shape ) )
break;
}
else
break;
}
//finish this part
if ( nextlink )
currentline.Create_End_Shape( &nextline, _last_ins_left, _last_ins_right, factor, shape );
else
currentline.Create_End_Shape( &firstline, _last_ins_left, _last_ins_right, factor, shape );
shape->MakeOneDirection();
shape->MakeClockWise();
}
//if the shape is very small first merge it with the previous shape
if ( !ring->empty() && shape->Small( ( B_INT ) fabs( factor * 3 ) ) )
{
TDLI<kbGraph> Iring = TDLI<kbGraph>( ring );
Iring.totail();
kbGraphList *_twoshapes = new kbGraphList( _GC );
_twoshapes->insbegin( shape );
_twoshapes->insbegin( Iring.item() );
Iring.remove();
_twoshapes->Merge();
//move merged graphlist to ring
Iring.takeover( _twoshapes );
delete _twoshapes;
}
else
ring->insend( shape );
currentlink->SetBeenHere();
}
}
//create an arc and add it to the graph
//center of circle
//begin point of arc
//end point of arc
//radius of arc
//aberation for generating the segments
void kbGraph::CreateArc( kbNode* center, kbNode* begin, kbNode* end, double radius, bool clock, double aber )
{
double phi, dphi, dx, dy;
int Segments;
int i;
double ang1, ang2, phit;
kbNode* _last_ins;
kbNode* _current;
_last_ins = begin;
dx = ( double ) _last_ins->GetX() - center->GetX();
dy = ( double ) _last_ins->GetY() - center->GetY();
ang1 = atan2( dy, dx );
if ( ang1 < 0 ) ang1 += 2.0 * M_PI;
dx = ( double ) end->GetX() - center->GetX();
dy = ( double ) end->GetY() - center->GetY();
ang2 = atan2( dy, dx );
if ( ang2 < 0 ) ang2 += 2.0 * M_PI;
if ( clock )
{ //clockwise
if ( ang2 > ang1 )
phit = 2.0 * M_PI - ang2 + ang1;
else
phit = ang1 - ang2;
}
else
{ //counter_clockwise
if ( ang1 > ang2 )
phit = -( 2.0 * M_PI - ang1 + ang2 );
else
phit = -( ang2 - ang1 );
}
//what is the delta phi to get an accurancy of aber
dphi = 2 * acos( ( radius - aber ) / radius );
//set the number of segments
if ( phit > 0 )
Segments = ( int )ceil( phit / dphi );
else
Segments = ( int )ceil( -phit / dphi );
if ( Segments <= 1 )
Segments = 1;
if ( Segments > 6 )
Segments = 6;
dphi = phit / ( Segments );
for ( i = 1; i < Segments; i++ )
{
dx = ( double ) _last_ins->GetX() - center->GetX();
dy = ( double ) _last_ins->GetY() - center->GetY();
phi = atan2( dy, dx );
_current = new kbNode( ( B_INT ) ( center->GetX() + radius * cos( phi - dphi ) ),
( B_INT ) ( center->GetY() + radius * sin( phi - dphi ) ), _GC );
AddLink( _last_ins, _current );
_last_ins = _current;
}
// make a node from the endnode of link
AddLink( _last_ins, end );
}
void kbGraph::CreateArc( kbNode* center, kbLine* incoming, kbNode* end, double radius, double aber )
{
double distance = 0;
if ( incoming->PointOnLine( center, distance, _GC->GetAccur() ) == RIGHT_SIDE )
CreateArc( center, incoming->GetEndNode(), end, radius, true, aber );
else
CreateArc( center, incoming->GetEndNode(), end, radius, false, aber );
}
void kbGraph::MakeOneDirection()
{
int _nr_of_points = _linklist->count();
kbLink* _current = ( kbLink* )_linklist->headitem();
kbNode* _last = _current->GetBeginNode();
kbNode* dummy;
for ( int i = 0; i < _nr_of_points; i++ )
{
// get the other node on the link
_last = _current->GetOther( _last );
// get the other link on the node
_current = _current->Forth( _last );
if ( _current->GetBeginNode() != _last )
{
// swap the begin- and endnode of the current link
dummy = _current->GetBeginNode();
_current->SetBeginNode( _current->GetEndNode() );
_current->SetEndNode( dummy );
}
}
}
bool kbGraph::Small( B_INT howsmall )
{
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
_LI.tohead();
kbNode* bg = _LI.item()->GetBeginNode();
B_INT xmin = bg->GetX();
B_INT xmax = bg->GetX();
B_INT ymin = bg->GetY();
B_INT ymax = bg ->GetY();
while ( !_LI.hitroot() )
{
bg = _LI.item()->GetBeginNode();
// make _boundingbox bigger if the link makes the graph bigger
// Checking if point is in bounding-box with marge
xmin = bmin( xmin, bg->GetX() );
xmax = bmax( xmax, bg->GetX() );
ymin = bmin( ymin, bg->GetY() );
ymax = bmax( ymax, bg->GetY() );
_LI++;
}
B_INT dx = ( xmax - xmin );
B_INT dy = ( ymax - ymin );
if ( ( dx < howsmall ) && ( dy < howsmall ) )
return true;
return false;
}
//create a circle at end and begin point
// and block in between
void kbGraph::Make_Rounded_Shape( kbLink* a_link, double factor )
{
double phi, dphi, dx, dy;
int Segments = 6;
int i;
kbLine theline( a_link, _GC );
theline.CalculateLineParameters();
kbNode* _current;
kbNode *_first = new kbNode( a_link->GetBeginNode(), _GC );
kbNode *_last_ins = _first;
theline.Virtual_Point( _first, factor );
// make a node from this point
_current = new kbNode( a_link->GetEndNode(), _GC );
theline.Virtual_Point( _current, factor );
// make a link between the current and the previous and add this to graph
AddLink( _last_ins, _current );
_last_ins = _current;
// make a half circle around the clock with the opposite point as
// the middle point of the circle
dphi = M_PI / ( Segments );
for ( i = 1; i < Segments; i++ )
{
dx = ( double ) _last_ins->GetX() - a_link->GetEndNode()->GetX();
dy = ( double ) _last_ins->GetY() - a_link->GetEndNode()->GetY();
phi = atan2( dy, dx );
_current = new kbNode( ( B_INT ) ( a_link->GetEndNode()->GetX() + factor * cos( phi - dphi ) ),
( B_INT ) ( a_link->GetEndNode()->GetY() + factor * sin( phi - dphi ) ), _GC );
AddLink( _last_ins, _current );
_last_ins = _current;
}
// make a node from the endnode of link
_current = new kbNode( a_link->GetEndNode(), _GC );
theline.Virtual_Point( _current, -factor );
AddLink( _last_ins, _current );
_last_ins = _current;
// make a node from this beginnode of link
_current = new kbNode( a_link->GetBeginNode(), _GC );
theline.Virtual_Point( _current, -factor );
AddLink( _last_ins, _current );
_last_ins = _current;
for ( i = 1; i < Segments; i++ )
{
dx = ( double ) _last_ins->GetX() - a_link->GetBeginNode()->GetX();
dy = ( double ) _last_ins->GetY() - a_link->GetBeginNode()->GetY();
phi = atan2( dy, dx );
_current = new kbNode( ( B_INT )( a_link->GetBeginNode()->GetX() + factor * cos( phi - dphi ) ),
( B_INT )( a_link->GetBeginNode()->GetY() + factor * sin( phi - dphi ) ), _GC );
AddLink( _last_ins, _current );
_last_ins = _current;
}
// make a link between the last and the first to close the graph
AddLink( _last_ins, _first );
}
//make the graph clockwise orientation,
//return if the graph needed redirection
bool kbGraph::MakeClockWise()
{
if ( _GC->GetOrientationEntryMode() )
return false;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.empty() ) return false;
kbLink *currentlink;
kbNode *begin;
_LI.foreach_mf( &kbLink::UnMark );//reset bin and mark flag of each link
_LI.mergesort( linkYXtopsorter );
_LI.tohead();
begin = GetMostTopLeft( &_LI ); // from all the most Top nodes,
// take the most left one
currentlink = begin->GetNotFlat();
if ( !currentlink )
{
char buf[100];
sprintf( buf, "no NON flat link MakeClockWise at %15.3lf , %15.3lf",
double( begin->GetX() ), double( begin->GetY() ) );
throw Bool_Engine_Error( buf, "Error", 9, 0 );
}
//test to see if the orientation is right or left
if ( currentlink->GetBeginNode() == begin )
{
if ( currentlink->GetEndNode()->GetX() < begin->GetX() )
{
//going left
//it needs redirection
ReverseAllLinks();
return true;
}
}
else
{
if ( currentlink->GetBeginNode()->GetX() > begin->GetX() )
{ //going left
//it needs redirection
ReverseAllLinks();
return true;
}
}
return false;
}
bool kbGraph::writegraph( bool linked )
{
#if KBOOL_DEBUG == 1
FILE * file = _GC->GetLogFile();
if ( file == NULL )
return true;
fprintf( file, "# graph\n" );
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.empty() )
{
return true;
}
_LI.tohead();
while( !_LI.hitroot() )
{
kbLink * curl = _LI.item();
fprintf( file, " linkbegin %I64d %I64d \n", curl->GetBeginNode()->GetX() , curl->GetBeginNode()->GetY() );
if ( linked )
{
TDLI<kbLink> Inode( curl->GetBeginNode()->GetLinklist() );
Inode.tohead();
while( !Inode.hitroot() )
{
fprintf( file, " b %I64d %I64d \n", Inode.item()->GetBeginNode()->GetX() , Inode.item()->GetBeginNode()->GetY() );
fprintf( file, " e %I64d %I64d \n", Inode.item()->GetEndNode()->GetX() , Inode.item()->GetEndNode()->GetY() );
Inode++;
}
}
fprintf( file, " linkend %I64d %I64d \n", curl->GetEndNode()->GetX() , curl->GetEndNode()->GetY() );
if ( linked )
{
TDLI<kbLink> Inode( curl->GetEndNode()->GetLinklist() );
Inode.tohead();
while( !Inode.hitroot() )
{
fprintf( file, " b %I64d %I64d \n", Inode.item()->GetBeginNode()->GetX() , Inode.item()->GetBeginNode()->GetY() );
fprintf( file, " e %I64d %I64d \n", Inode.item()->GetEndNode()->GetX() , Inode.item()->GetEndNode()->GetY() );
Inode++;
}
}
if ( curl->GetBeginNode() == curl->GetEndNode() )
fprintf( file, " null_link \n" );
fprintf( file, " group %d ", curl->Group() );
fprintf( file, " bin %d ", curl->BeenHere() );
fprintf( file, " mark %d ", curl->IsMarked() );
fprintf( file, " leftA %d ", curl->GetLeftA() );
fprintf( file, " rightA %d ", curl->GetRightA() );
fprintf( file, " leftB %d ", curl->GetLeftB() );
fprintf( file, " rightB %d \n", curl->GetRightB() );
fprintf( file, " or %d ", curl->IsMarked( BOOL_OR ) );
fprintf( file, " and %d " , curl->IsMarked( BOOL_AND ) );
fprintf( file, " exor %d " , curl->IsMarked( BOOL_EXOR ) );
fprintf( file, " a_sub_b %d " , curl->IsMarked( BOOL_A_SUB_B ) );
fprintf( file, " b_sub_a %d " , curl->IsMarked( BOOL_B_SUB_A ) );
fprintf( file, " hole %d " , curl->GetHole() );
fprintf( file, " top_hole %d \n" , curl->IsTopHole() );
_LI++;
}
#endif
return true;
}
bool kbGraph::writeintersections()
{
#if KBOOL_DEBUG == 1
FILE * file = _GC->GetLogFile();
if ( file == NULL )
return true;
fprintf( file, "# graph\n" );
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
if ( _LI.empty() )
{
return true;
}
_LI.tohead();
while( !_LI.hitroot() )
{
kbLink * curl = _LI.item();
TDLI<kbLink> Inode( curl->GetBeginNode()->GetLinklist() );
Inode.tohead();
if ( Inode.count() > 2 )
{
fprintf( file, " count %I64d", Inode.count() );
fprintf( file, " b %I64d %I64d \n\n", curl->GetBeginNode()->GetX() , curl->GetBeginNode()->GetY() );
}
_LI++;
}
#endif
return true;
}
bool kbGraph::checksort()
{
// if empty then just insert
if ( _linklist->empty() )
return true;
TDLI<kbLink> _LI = TDLI<kbLink>( _linklist );
// put new item left of the one that is bigger
_LI.tohead();
kbLink* prev = _LI.item();
kbLink* cur = _LI.item();
_LI++;
while( !_LI.hitroot() )
{
kbLink * aap = _LI.item();
if ( linkXYsorter( prev, _LI.item() ) == -1 )
{
cur = aap;
return false;
}
prev = _LI.item();
_LI++;
}
return true;
}
void kbGraph::WriteKEY( Bool_Engine* GC, FILE* file )
{
double scale = 1.0 / GC->GetGrid() / GC->GetGrid();
bool ownfile = false;
if ( !file )
{
file = fopen( "keyfile.key", "w" );
ownfile = true;
fprintf( file, "\
HEADER 5; \
BGNLIB; \
LASTMOD {2-11-15 15:39:21}; \
LASTACC {2-11-15 15:39:21}; \
LIBNAME trial; \
UNITS; \
USERUNITS 0.0001; PHYSUNITS 1e-009; \
\
BGNSTR; \
CREATION {2-11-15 15:39:21}; \
LASTMOD {2-11-15 15:39:21}; \
STRNAME top; \
");
}
TDLI<kbLink> _LI=TDLI<kbLink>(_linklist);
if (_LI.empty())
{
if ( ownfile )
{
fprintf(file,"\
ENDSTR top; \
ENDLIB; \
");
fclose (file);
}
return;
}
_LI.tohead();
kbLink* curl = _LI.item();
if ( _LI.item()->Group() == GROUP_A )
fprintf(file,"BOUNDARY; LAYER 0; DATATYPE 0;\n");
else
fprintf(file,"BOUNDARY; LAYER 1; DATATYPE 0;\n");
fprintf(file," XY % d; \n", _LI.count()+1 );
double firstx = curl->GetBeginNode()->GetX()*scale;
double firsty = curl->GetBeginNode()->GetY()*scale;
fprintf(file,"X % f;\t", firstx);
fprintf(file,"Y % f; \n", firsty);
_LI++;
while(!_LI.hitroot())
{
kbLink* curl = _LI.item();
fprintf(file,"X % f;\t", curl->GetBeginNode()->GetX()*scale);
fprintf(file,"Y % f; \n", curl->GetBeginNode()->GetY()*scale);
_LI++;
}
fprintf(file,"X % f;\t", firstx);
fprintf(file,"Y % f; \n", firsty);
fprintf(file,"ENDEL;\n");
if ( ownfile )
{
fprintf(file,"\
ENDSTR top; \
ENDLIB; \
");
fclose (file);
}
}
void kbGraph::WriteGraphKEY(Bool_Engine* GC)
{
#if KBOOL_DEBUG
double scale = 1.0/GC->GetGrid()/GC->GetGrid();
FILE* file = fopen("keygraphfile.key", "w");
fprintf(file,"\
HEADER 5; \
BGNLIB; \
LASTMOD {2 - 11 - 15 15: 39: 21}; \
LASTACC {2 - 11 - 15 15: 39: 21}; \
LIBNAME trial; \
UNITS; \
USERUNITS 1; PHYSUNITS 1e-006; \
\
BGNSTR; \
CREATION {2 - 11 - 15 15: 39: 21}; \
LASTMOD {2 - 11 - 15 15: 39: 21}; \
STRNAME top; \
");
TDLI<kbLink> _LI=TDLI<kbLink>(_linklist);
if (_LI.empty())
{
fprintf(file,"\
ENDSTR top; \
ENDLIB; \
");
fclose (file);
return;
}
_LI.tohead();
kbLink* curl;
int _nr_of_points = _linklist->count();
for (int i = 0; i < _nr_of_points; i++)
{
curl = _LI.item();
if ( curl->Group() == GROUP_A )
fprintf(file,"PATH; LAYER 0;\n");
else
fprintf(file,"PATH; LAYER 1;\n");
fprintf(file," XY % d; \n", 2 );
fprintf(file,"X % f;\t", curl->GetBeginNode()->GetX()*scale);
fprintf(file,"Y % f; \n", curl->GetBeginNode()->GetY()*scale);
fprintf(file,"X % f;\t", curl->GetEndNode()->GetX()*scale);
fprintf(file,"Y % f; \n", curl->GetEndNode()->GetY()*scale);
_LI++;
fprintf(file,"ENDEL;\n");
}
fprintf(file,"\
ENDSTR top; \
ENDLIB; \
");
fclose (file);
#endif
}
/*! \file src/graphlst.cpp
\brief Implements a list of graphs
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: graphlst.cpp,v 1.4 2009/09/10 17:04:09 titato Exp $
*/
//#include "debugdrv.h"
#include "kbool/booleng.h"
#include "kbool/graphlst.h"
//extern Debug_driver* _debug_driver;
//this here is to initialize the static iterator of graphlist
//with NOLIST constructor
int graphsorterX( kbGraph *, kbGraph * );
int graphsorterY( kbGraph *, kbGraph * );
kbGraphList::kbGraphList( Bool_Engine* GC )
{
_GC = GC;
}
kbGraphList::kbGraphList( kbGraphList* other )
{
_GC = other->_GC;
TDLI<kbGraph> _LI = TDLI<kbGraph>( other );
_LI.tohead();
while ( !_LI.hitroot() )
{
insend( new kbGraph( _LI.item() ) );
_LI++;
}
}
kbGraphList::~kbGraphList()
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
//first empty the graph
_LI.delete_all();
}
//prepare the graphlist for the boolean operations
//group all graphs into ONE graph
void kbGraphList::Prepare( kbGraph* total )
{
if ( empty() )
return;
//round to grid and put in one graph
_GC->SetState( "Simplify" );
// Simplify all graphs in the list
Simplify( ( double ) _GC->GetGrid() );
if ( ! _GC->GetOrientationEntryMode() )
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.tohead();
while ( !_LI.hitroot() )
{
_LI.item()->MakeClockWise();
_LI++;
}
}
Renumber();
//the graplist contents will be transferred to one graph
MakeOneGraph( total );
}
// the function will make from all the graphs in the graphlist one graph,
// simply by throwing all the links in one graph, the graphnumbers will
// not be changed
void kbGraphList::MakeOneGraph( kbGraph* total )
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.tohead();
while( !_LI.hitroot() )
{
total->TakeOver( _LI.item() );
delete _LI.item();
_LI.remove();
}
}
//
// Renumber all the graphs
//
void kbGraphList::Renumber()
{
if ( _GC->GetOrientationEntryMode() )
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->GetFirstLink()->Group() == GROUP_A )
_LI.item()->SetNumber( 1 );
else
_LI.item()->SetNumber( 2 );
_LI++;
}
}
else
{
unsigned int Number = 1;
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.tohead();
while ( !_LI.hitroot() )
{
_LI.item()->SetNumber( Number++ );
_LI++;
}
}
}
// Simplify the graphs
void kbGraphList::Simplify( double marge )
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.foreach_mf( &kbGraph::Reset_Mark_and_Bin );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->Simplify( ( B_INT ) marge ) )
{
if ( _LI.item()->GetNumberOfLinks() < 3 )
// delete this graph from the graphlist
{
delete _LI.item();
_LI.remove();
}
}
else
_LI++;
}
}
// Smoothen the graphs
void kbGraphList::Smoothen( double marge )
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.foreach_mf( &kbGraph::Reset_Mark_and_Bin );
_LI.tohead();
while ( !_LI.hitroot() )
{
if ( _LI.item()->Smoothen( ( B_INT ) marge ) )
{
if ( _LI.item()->GetNumberOfLinks() < 3 )
// delete this graph from the graphlist
{
delete _LI.item();
_LI.remove();
}
}
else
_LI++;
}
}
// Turn off all markers in all the graphs
void kbGraphList::UnMarkAll()
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.foreach_mf( &kbGraph::Reset_Mark_and_Bin );
}
//==============================================================================
//
//======================== BOOLEAN FUNCTIONS ===================================
//
//==============================================================================
void kbGraphList::Correction()
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
int todo = _LI.count();
if ( _GC->GetInternalCorrectionFactor() ) //not zero
{
_LI.tohead();
for( int i = 0; i < todo ; i++ )
{
//the input graph will be empty in the end
kbGraphList *_correct = new kbGraphList( _GC );
{
_LI.item()->MakeClockWise();
_LI.item()->Correction( _correct, _GC->GetInternalCorrectionFactor() );
delete _LI.item();
_LI.remove();
//move corrected graphlist to result
while ( !_correct->empty() )
{
//add to end
_LI.insend( ( kbGraph* )_correct->headitem() );
_correct->removehead();
}
}
delete _correct;
}
}
}
void kbGraphList::MakeRings()
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
int todo = _LI.count();
_LI.tohead();
for( int i = 0; i < todo ; i++ )
{
//the input graph will be empty in the end
kbGraphList *_ring = new kbGraphList( _GC );
{
_LI.item()->MakeClockWise();
_LI.item()->MakeRing( _ring, _GC->GetInternalCorrectionFactor() );
delete _LI.item();
_LI.remove();
//move created rings graphs to this
while ( !_ring->empty() )
{
//add to end
( ( kbGraph* )_ring->headitem() )->MakeClockWise();
_LI.insend( ( kbGraph* )_ring->headitem() );
_ring->removehead();
}
}
delete _ring;
}
}
//merge the graphs in the list and return the merged result
void kbGraphList::Merge()
{
if ( count() <= 1 )
return;
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.tohead();
while ( !_LI.hitroot() )
{
_LI.item()->SetGroup( GROUP_A );
_LI++;
}
}
kbGraph* _tomerge = new kbGraph( _GC );
Renumber();
//the graplist contents will be transferred to one graph
MakeOneGraph( _tomerge );
//the original is empty now
_tomerge->Prepare( 1 );
_tomerge->Boolean( BOOL_OR, this );
delete _tomerge;
}
#define TRIALS 30
#define SAVEME 1
//perform boolean operation on the graphs in the list
void kbGraphList::Boolean( BOOL_OP operation, int intersectionRunsMax )
{
_GC->SetState( "Performing Boolean Operation" );
if ( count() == 0 )
return;
kbGraph* _prepared = new kbGraph( _GC );
if ( empty() )
return;
//round to grid and put in one graph
_GC->SetState( "Simplify" );
int intersectionruns = 1;
while ( intersectionruns <= intersectionRunsMax )
{
try
{
Prepare( _prepared );
if ( _prepared->GetNumberOfLinks() )
{
//calculate intersections etc.
_GC->SetState( "prepare" );
_prepared->Prepare( intersectionruns );
//_prepared->writegraph(true);
_prepared->Boolean( operation, this );
}
intersectionruns = intersectionRunsMax + 1;
}
catch ( Bool_Engine_Error & error )
{
#if KBOOL_DEBUG
_prepared->WriteGraphKEY( _GC );
#endif
intersectionruns++;
if ( intersectionruns == intersectionRunsMax )
{
_prepared->WriteGraphKEY( _GC );
_GC->info( error.GetErrorMessage(), "error" );
throw error;
}
}
catch( ... )
{
#if KBOOL_DEBUG
_prepared->WriteGraphKEY( _GC );
#endif
intersectionruns++;
if ( intersectionruns == intersectionRunsMax )
{
_prepared->WriteGraphKEY( _GC );
_GC->info( "Unknown exception", "error" );
throw;
}
}
}
delete _prepared;
}
void kbGraphList::WriteGraphs()
{
TDLI<kbGraph> _LI = TDLI<kbGraph>( this );
_LI.tohead();
while( !_LI.hitroot() )
{
_LI.item()->writegraph( false );
_LI++;
}
}
void kbGraphList::WriteGraphsKEY( Bool_Engine* GC )
{
FILE * file = fopen( "graphkeyfile.key", "w" );
fprintf( file, "\
HEADER 5; \
BGNLIB; \
LASTMOD {2-11-15 15:39:21}; \
LASTACC {2-11-15 15:39:21}; \
LIBNAME trial; \
UNITS; \
USERUNITS 0.0001; PHYSUNITS 1e-009; \
\
BGNSTR; \
CREATION {2-11-15 15:39:21}; \
LASTMOD {2-11-15 15:39:21}; \
STRNAME top; \
");
TDLI<kbGraph> _LI=TDLI<kbGraph>(this);
_LI.tohead();
while(!_LI.hitroot())
{
_LI.item()->WriteKEY( GC, file );
_LI++;
}
fprintf(file,"\
ENDSTR top; \
ENDLIB; \
");
fclose (file);
}
/*! \file kbool/src/instonly.cpp
\author Probably Klaas Holwerda
Copyright: 2001-2004 (C) Probably Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: instonly.cpp,v 1.3 2009/02/06 21:33:03 titato Exp $
*/
#ifdef __GNUG__
#pragma option -Jgd
#include "kbool/_dl_itr.h"
#include "kbool/node.h"
#include "kbool/record.h"
#include "kbool/link.h"
#include "kbool/_lnk_itr.h"
#include "kbool/scanbeam.h"
#include "kbool/graph.h"
#include "kbool/graphlst.h"
//#include "kbool/misc.h"
template class DL_Node<void *>;
template class DL_Iter<void *>;
template class DL_List<void *>;
template class DL_Node<int>;
template class DL_Iter<int>;
template class DL_List<int>;
template class TDLI<Node>;
template class TDLI<LPoint>;
template class TDLI<Record>;
template class TDLI<KBoolLink>;
template class TDLI<Graph>;
#endif
/*! \file src/line.cpp
\brief Mainly used for calculating crossings
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: line.cpp,v 1.6 2009/09/13 18:34:06 titato Exp $
*/
// Standard include files
#include "kbool/booleng.h"
// Include files for forward declarations
#include "kbool/link.h"
#include "kbool/node.h"
// header
#include "kbool/line.h"
#include "kbool/graph.h"
#include "kbool/graphlst.h"
//
// The default constructor
//
kbLine::kbLine( Bool_Engine* GC )
{
m_GC = GC;
m_AA = 0.0;
m_BB = 0.0;
m_CC = 0.0;
m_link = 0;
linecrosslist = NULL;
m_valid_parameters = false;
}
kbLine::~kbLine()
{
if ( linecrosslist )
delete linecrosslist;
}
//
// constructor with a link
//
kbLine::kbLine( kbLink *a_link, Bool_Engine* GC )
{
m_GC = GC;
// a_link must exist
assert( a_link );
// points may not be equal
// must be an if statement because if an assert is used there will
// be a macro expansion error
//if (a_link->GetBeginNode()->Equal(a_link->GetEndNode(), 1))
// assert(!a_link);
linecrosslist = NULL;
m_link = a_link;
m_valid_parameters = false;
}
// ActionOnTable1
// This function decide which action must be taken, after PointInLine
// has given the results of two points in relation to a line. See table 1 in the report
//
// input Result_beginnode:
// Result_endnode :
// The results can be LEFT_SIDE, RIGHT_SIDE, ON_AREA, IN_AREA
//
// return -1: Illegal combination
// 0: No action, no crosspoints
// 1: Investigate results points in relation to the other line
// 2: endnode is a crosspoint, no further investigation
// 3: beginnode is a crosspoint, no further investigation
// 4: beginnode and endnode are crosspoints, no further investigation
// 5: beginnode is a crosspoint, need further investigation
// 6: endnode is a crosspoint, need further investigation
int kbLine::ActionOnTable1( PointStatus Result_beginnode, PointStatus Result_endnode )
{
// Action 1.5 beginnode and endnode are crosspoints, no further investigation needed
if (
( Result_beginnode == IN_AREA )
&&
( Result_endnode == IN_AREA )
)
return 4;
// Action 1.1, there are no crosspoints, no action
if (
(
( Result_beginnode == LEFT_SIDE )
&&
( Result_endnode == LEFT_SIDE )
)
||
(
( Result_beginnode == RIGHT_SIDE )
&&
( Result_endnode == RIGHT_SIDE )
)
)
return 0;
// Action 1.2, maybe there is a crosspoint, further investigation needed
if (
(
( Result_beginnode == LEFT_SIDE )
&&
(
( Result_endnode == RIGHT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
||
(
( Result_beginnode == RIGHT_SIDE )
&&
(
( Result_endnode == LEFT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
||
(
( Result_beginnode == ON_AREA )
&&
(
( Result_endnode == LEFT_SIDE )
||
( Result_endnode == RIGHT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
)
return 1;
// Action 1.3, there is a crosspoint, no further investigation
if (
(
( Result_beginnode == LEFT_SIDE )
||
( Result_beginnode == RIGHT_SIDE )
)
&&
( Result_endnode == IN_AREA )
)
return 2;
// Action 1.4 there is a crosspoint, no further investigation
if (
( Result_beginnode == IN_AREA )
&&
(
( Result_endnode == LEFT_SIDE )
||
( Result_endnode == RIGHT_SIDE )
)
)
return 3;
// Action 1.6 beginnode is a crosspoint, further investigation needed
if (
( Result_beginnode == IN_AREA )
&&
( Result_endnode == ON_AREA )
)
return 5;
// Action 1.7 endnode is a crosspoint, further investigation needed
if (
( Result_beginnode == ON_AREA )
&&
( Result_endnode == IN_AREA )
)
return 6;
// All other combinations are illegal
return -1;
}
// ActionOnTable2
// This function decide which action must be taken, after PointInLine
// has given the results of two points in relation to a line. It can only give a
// correct decision if first the relation of the points from the line
// are investigated in relation to the line wich can be constucted from the points.
//
// input Result_beginnode:
// Result_endnode :
// The results can be LEFT_SIDE, RIGHT_SIDE, ON_AREA, IN_AREA
//
// return -1: Illegal combination
// 0: No action, no crosspoints
// 1: Calculate crosspoint
// 2: endnode is a crosspoint
// 3: beginnode is a crosspoint
// 4: beginnode and endnode are crosspoints
int kbLine::ActionOnTable2( PointStatus Result_beginnode, PointStatus Result_endnode )
{
// Action 2.5, beginnode and eindpoint are crosspoints
if (
( Result_beginnode == IN_AREA )
&&
( Result_endnode == IN_AREA )
)
return 4;
// Action 2.1, there are no crosspoints
if (
(
( Result_beginnode == LEFT_SIDE )
&&
(
( Result_endnode == LEFT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
||
(
( Result_beginnode == RIGHT_SIDE )
&&
(
( Result_endnode == RIGHT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
||
(
( Result_beginnode == ON_AREA )
&&
(
( Result_endnode == LEFT_SIDE )
||
( Result_endnode == RIGHT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
)
return 0;
// Action 2.2, there is a real intersection, which must be calculated
if (
(
( Result_beginnode == LEFT_SIDE )
&&
( Result_endnode == RIGHT_SIDE )
)
||
(
( Result_beginnode == RIGHT_SIDE )
&&
( Result_endnode == LEFT_SIDE )
)
)
return 1;
// Action 2.3, endnode is a crosspoint
if (
(
( Result_beginnode == LEFT_SIDE )
||
( Result_beginnode == RIGHT_SIDE )
||
( Result_beginnode == ON_AREA )
)
&&
( Result_endnode == IN_AREA )
)
return 2;
// Action 2.4, beginnode is a crosspoint
if (
( Result_beginnode == IN_AREA )
&&
(
( Result_endnode == LEFT_SIDE )
||
( Result_endnode == RIGHT_SIDE )
||
( Result_endnode == ON_AREA )
)
)
return 3;
// All other combinations are illegal
return -1;
}
//
// This fucntion will ad a crossing to this line and the other line
// the crossing will be put in the link, because the line will be destructed
// after use of the variable
//
void kbLine::AddLineCrossing( B_INT X, B_INT Y, kbLine *other_line )
{
// the other line must exist
assert( other_line );
// the links of the lines must exist
assert( other_line->m_link && m_link );
other_line->AddCrossing( AddCrossing( X, Y ) );
}
// Calculate the Y when the X is given
//
B_INT kbLine::Calculate_Y( B_INT X )
{
// link must exist to get info about the nodes
assert( m_link );
CalculateLineParameters();
if ( m_AA != 0 )
{
//vertical line is undefined
assert( m_BB );
return ( B_INT )( -( m_AA * X + m_CC ) / m_BB );
}
else
// horizontal line
return m_link->GetBeginNode()->GetY();
}
B_INT kbLine::Calculate_Y_from_X( B_INT X )
{
// link must exist to get info about the nodes
assert( m_link );
assert( m_valid_parameters );
if ( m_AA != 0 )
return ( B_INT ) ( ( -( m_AA * X + m_CC ) / m_BB ) + 0.5 );
else
// horizontal line
return m_link->GetBeginNode()->GetY();
}
void kbLine::Virtual_Point( kbLPoint *a_point, double distance )
{
// link must exist to get info about the nodes
assert( m_link );
assert( m_valid_parameters );
//calculate the distance using the slope of the line
//and rotate 90 degrees
a_point->SetY( ( B_INT )( a_point->GetY() + ( distance * -( m_BB ) ) ) );
a_point->SetX( ( B_INT )( a_point->GetX() - ( distance * m_AA ) ) );
}
//
// Calculate the lineparameters for the line if nessecary
//
void kbLine::CalculateLineParameters()
{
// linkmust exist to get beginnode AND endnode
assert( m_link );
// if not valid_parameters calculate the parameters
if ( !m_valid_parameters )
{
kbNode * bp, *ep;
double length;
// get the begin and endnode via the link
bp = m_link->GetBeginNode();
ep = m_link->GetEndNode();
// bp AND ep may not be the same
if ( bp == ep )
assert ( bp != ep );
m_AA = ( double ) ( ep->GetY() - bp->GetY() ); // A = (Y2-Y1)
m_BB = ( double ) ( bp->GetX() - ep->GetX() ); // B = (X1-X2)
// the parameters A end B can now be normalized
length = sqrt( m_AA * m_AA + m_BB * m_BB );
if( length == 0 )
m_GC->error( "length = 0", "CalculateLineParameters" );
m_AA = ( m_AA / length );
m_BB = ( m_BB / length );
m_CC = -( ( m_AA * bp->GetX() ) + ( bp->GetY() * m_BB ) );
m_valid_parameters = true;
}
}
// Checks if a line intersect with another line
// inout Line : another line
// Marge: optional, standard on MARGE (declared in MISC.CPP)
//
// return true : lines are crossing
// false: lines are not crossing
//
int kbLine::CheckIntersect ( kbLine * lijn, double Marge )
{
double distance = 0;
// link must exist
assert( m_link );
// lijn must exist
assert( lijn );
// points may not be equal
// must be an if statement because if an assert is used there will
// be a macro expansion error
if ( m_link->GetBeginNode() == m_link->GetEndNode() )
assert( !m_link );
int Take_Action1, Take_Action2, Total_Result;
kbNode *bp, *ep;
PointStatus Result_beginnode, Result_endnode;
bp = lijn->m_link->GetBeginNode();
ep = lijn->m_link->GetEndNode();
Result_beginnode = PointInLine( bp, distance, Marge );
Result_endnode = PointInLine( ep, distance, Marge );
Take_Action1 = ActionOnTable1( Result_beginnode, Result_endnode );
switch ( Take_Action1 )
{
case 0: Total_Result = false ; break;
case 1:
{
bp = m_link->GetBeginNode();
ep = m_link->GetEndNode();
Result_beginnode = lijn->PointInLine( bp, distance, Marge );
Result_endnode = lijn->PointInLine( ep, distance, Marge );
Take_Action2 = ActionOnTable2( Result_beginnode, Result_endnode );
switch ( Take_Action2 )
{
case 0: Total_Result = false; break;
case 1: case 2: case 3: case 4: Total_Result = true; break;
default: Total_Result = false; assert( Total_Result );
}
}
; break; // This break belongs to the switch(Take_Action1)
case 2: case 3: case 4: case 5: case 6: Total_Result = true; break;
default: Total_Result = false; assert( Total_Result );
}
return Total_Result; //This is the final decision
}
//
// Get the beginnode from the line
// usage: kbNode *anode = a_line.GetBeginNode()
//
kbNode *kbLine::GetBeginNode()
{
// link must exist
assert( m_link );
return m_link->GetBeginNode();
}
//
// Get the endnode from the line
// usage: kbNode *anode = a_line.GetEndNode()
//
kbNode *kbLine::GetEndNode()
{
// link must exist
assert( m_link );
return m_link->GetEndNode();
}
// Intersects two lines
// input Line : another line
// Marge: optional, standard on MARGE
//
// return 0: If there are no crossings
// 1: If there is one crossing
// 2: If there are two crossings
int kbLine::Intersect( kbLine * lijn, double Marge )
{
double distance = 0;
// lijn must exist
assert( lijn );
// points may not be equal
// must be an if statement because if an assert is used there will
// be a macro expansion error
if ( m_link->GetBeginNode() == m_link->GetEndNode() )
assert( !m_link );
kbNode *bp, *ep;
PointStatus Result_beginnode, Result_endnode;
int Take_Action1, Take_Action2, Number_of_Crossings = 0;
// Get the nodes from lijn via the link
bp = lijn->m_link->GetBeginNode();
ep = lijn->m_link->GetEndNode();
Result_beginnode = PointInLine( bp, distance, Marge );
Result_endnode = PointInLine( ep, distance, Marge );
Take_Action1 = ActionOnTable1( Result_beginnode, Result_endnode );
// The first switch will insert a crosspoint immediatly
switch ( Take_Action1 )
{
// for the cases see the returnvalue of ActionTable1
case 2: case 6: AddCrossing( ep );
Number_of_Crossings = 1;
break;
case 3: case 5: AddCrossing( bp );
Number_of_Crossings = 1;
break;
case 4: AddCrossing( bp );
AddCrossing( ep );
Number_of_Crossings = 2;
break;
}
// This switch wil investigate the points of this line in relation to lijn
switch ( Take_Action1 )
{
// for the cases see the returnvalue of ActionTable1
case 1: case 5: case 6:
{
// Get the nodes from this line via the link
bp = m_link->GetBeginNode();
ep = m_link->GetEndNode();
Result_beginnode = lijn->PointInLine( bp, distance, Marge );
Result_endnode = lijn->PointInLine( ep, distance, Marge );
Take_Action2 = ActionOnTable2( Result_beginnode, Result_endnode );
switch ( Take_Action2 )
{
// for the cases see the returnvalue of ActionTable2
case 1:
{ // begin of scope to calculate the intersection
double X, Y, Denominator;
CalculateLineParameters();
Denominator = ( m_AA * lijn->m_BB ) - ( lijn->m_AA * m_BB );
// Denominator may not be 0
assert( Denominator != 0.0 );
// Calculate intersection of both linesegments
X = ( ( m_BB * lijn->m_CC ) - ( lijn->m_BB * m_CC ) ) / Denominator;
Y = ( ( lijn->m_AA * m_CC ) - ( m_AA * lijn->m_CC ) ) / Denominator;
//make a decent rounding to B_INT
AddLineCrossing( ( B_INT )X, ( B_INT )Y, lijn );
} // end of scope to calculate the intersection
Number_of_Crossings++;
break;
case 2: lijn->AddCrossing( ep );
Number_of_Crossings++;
break;
case 3: lijn->AddCrossing( bp );
Number_of_Crossings++;
break;
case 4: lijn->AddCrossing( bp );
lijn->AddCrossing( ep );
Number_of_Crossings = 2;
break;
}
}
; break; // This break belongs to the outer switch
}
return Number_of_Crossings; //This is de final number of crossings
}
// Intersects two lines there must be a crossing
int kbLine::Intersect_simple( kbLine * lijn )
{
// lijn must exist
assert( lijn );
double X, Y, Denominator;
Denominator = ( m_AA * lijn->m_BB ) - ( lijn->m_AA * m_BB );
// Denominator may not be 0
if ( Denominator == 0.0 )
m_GC->error( "colliniar lines", "line" );
// Calculate intersection of both linesegments
X = ( ( m_BB * lijn->m_CC ) - ( lijn->m_BB * m_CC ) ) / Denominator;
Y = ( ( lijn->m_AA * m_CC ) - ( m_AA * lijn->m_CC ) ) / Denominator;
AddLineCrossing( ( B_INT )X, ( B_INT )Y, lijn );
return( 0 );
}
// Intersects two lines there must be a crossing
bool kbLine::Intersect2( kbNode* crossing, kbLine * lijn )
{
// lijn must exist
assert( lijn );
double X, Y, Denominator;
Denominator = ( m_AA * lijn->m_BB ) - ( lijn->m_AA * m_BB );
// Denominator may not be 0
if ( Denominator == 0.0 )
return false;
// Calculate intersection of both linesegments
X = ( ( m_BB * lijn->m_CC ) - ( lijn->m_BB * m_CC ) ) / Denominator;
Y = ( ( lijn->m_AA * m_CC ) - ( m_AA * lijn->m_CC ) ) / Denominator;
crossing->SetX( ( B_INT )X );
crossing->SetY( ( B_INT )Y );
return true;
}
//
// test if a point lies in the linesegment. If the point isn't on the line
// the function returns a value that indicates on which side of the
// line the point is (in linedirection from first point to second point
//
// returns LEFT_SIDE, when point lies on the left side of the line
// RIGHT_SIDE, when point lies on the right side of the line
// ON_AREA, when point lies on the infinite line within a range
// IN_AREA, when point lies in the area of the linesegment
// the returnvalues are declared in (LINE.H)
PointStatus kbLine::PointInLine( kbNode *a_node, double& Distance, double Marge )
{
Distance = 0;
//Punt must exist
assert( a_node );
// link must exist to get beginnode and endnode via link
assert( m_link );
// get the nodes form the line via the link
kbNode *bp, *ep;
bp = m_link->GetBeginNode();
ep = m_link->GetEndNode();
// both node must exist
assert( bp && ep );
// node may not be the same
assert( bp != ep );
//quick test if point is begin or endpoint
if ( a_node == bp || a_node == ep )
return IN_AREA;
int Result_of_BBox = false;
PointStatus Result_of_Online;
// Checking if point is in bounding-box with marge
B_INT xmin = bmin( bp->GetX(), ep->GetX() );
B_INT xmax = bmax( bp->GetX(), ep->GetX() );
B_INT ymin = bmin( bp->GetY(), ep->GetY() );
B_INT ymax = bmax( bp->GetY(), ep->GetY() );
if ( a_node->GetX() >= ( xmin - Marge ) && a_node->GetX() <= ( xmax + Marge ) &&
a_node->GetY() >= ( ymin - Marge ) && a_node->GetY() <= ( ymax + Marge ) )
Result_of_BBox = true;
// Checking if point is on the infinite line
Result_of_Online = PointOnLine( a_node, Distance, Marge );
// point in boundingbox of the line and is on the line then the point is IN_AREA
if ( ( Result_of_BBox ) && ( Result_of_Online == ON_AREA ) )
return IN_AREA;
else
return Result_of_Online;
}
//
// test if a point lies on the line. If the point isn't on the line
// the function returns a value that indicates on which side of the
// line the point is (in linedirection from first point to second point
//
// returns LEFT_SIDE, when point lies on the left side of the line
// ON_AREA, when point lies on the infinite line within a range
// RIGHT_SIDE, when point lies on the right side of the line
// LEFT_SIDE , RIGHT_SIDE , ON_AREA
PointStatus kbLine::PointOnLine( kbNode *a_node, double& Distance, double Marge )
{
Distance = 0;
// a_node must exist
assert( a_node );
// link must exist to get beginnode and endnode
assert( m_link );
// get the nodes from the line via the link
kbNode *bp, *ep;
bp = m_link->GetBeginNode();
ep = m_link->GetEndNode();
// both node must exist
assert( bp && ep );
// node may not be queal
assert( bp != ep );
//quick test if point is begin or endpoint
if ( a_node == bp || a_node == ep )
return ON_AREA;
CalculateLineParameters();
// calculate the distance of a_node in relation to the line
Distance = ( m_AA * a_node->GetX() ) + ( m_BB * a_node->GetY() ) + m_CC;
if ( Distance < -Marge )
return LEFT_SIDE;
else
{
if ( Distance > Marge )
return RIGHT_SIDE;
else
return ON_AREA;
}
}
//
// Sets lines parameters
// usage: a_line.Set(a_pointer_to_a_link);
//
void kbLine::Set( kbLink *a_link )
{
// points must exist
assert( a_link );
// points may not be equal
// must be an if statement because if an assert is used there will
// be a macro expansion error
// if (a_link->GetBeginNode()->Equal(a_link->GetEndNode(),MARGE)) assert(!a_link);
linecrosslist = NULL;
m_link = a_link;
m_valid_parameters = false;
}
kbLink* kbLine::GetLink()
{
return m_link;
}
//
// makes a line same as these
// usage : line1 = line2;
//
kbLine& kbLine::operator=( const kbLine& a_line )
{
m_AA = a_line.m_AA;
m_BB = a_line.m_BB;
m_CC = a_line.m_CC;
m_link = a_line.m_link;
linecrosslist = NULL;
m_valid_parameters = a_line.m_valid_parameters;
return *this;
}
kbNode* kbLine::OffsetContour( kbLine* const nextline, kbNode* _last_ins, double factor, kbGraph *shape )
{
kbLink * offs_currentlink;
kbLine offs_currentline( m_GC );
kbLink* offs_nextlink;
kbLine offs_nextline( m_GC );
kbNode* offs_end;
kbNode* offs_bgn_next;
kbNode* offs_end_next;
// make a node from this point
offs_end = new kbNode( GetEndNode(), m_GC );
Virtual_Point( offs_end, factor );
offs_currentlink = new kbLink( 0, _last_ins, offs_end, m_GC );
offs_currentline.Set( offs_currentlink );
offs_bgn_next = new kbNode( nextline->m_link->GetBeginNode(), m_GC );
nextline->Virtual_Point( offs_bgn_next, factor );
offs_end_next = new kbNode( nextline->m_link->GetEndNode(), m_GC );
nextline->Virtual_Point( offs_end_next, factor );
offs_nextlink = new kbLink( 0, offs_bgn_next, offs_end_next, m_GC );
offs_nextline.Set( offs_nextlink );
offs_currentline.CalculateLineParameters();
offs_nextline.CalculateLineParameters();
offs_currentline.Intersect2( offs_end, &offs_nextline );
// make a link between the current and the previous and add this to kbGraph
shape->AddLink( offs_currentlink );
delete offs_nextlink;
return( offs_end );
}
kbNode* kbLine::OffsetContour_rounded( kbLine* const nextline, kbNode* _last_ins, double factor, kbGraph *shape )
{
kbLink * offs_currentlink;
kbLine offs_currentline( m_GC );
kbLink* offs_nextlink;
kbLine offs_nextline( m_GC );
kbNode* offs_end;
kbNode* medial_axes_point = new kbNode( m_GC );
kbNode* bu_last_ins = new kbNode( _last_ins, m_GC );
kbNode* offs_bgn_next;
kbNode* offs_end_next;
// make a node from this point
offs_end = new kbNode( GetEndNode(), m_GC );
*_last_ins = *GetBeginNode();
Virtual_Point( _last_ins, factor );
Virtual_Point( offs_end, factor );
offs_currentlink = new kbLink( 0, _last_ins, offs_end, m_GC );
offs_currentline.Set( offs_currentlink );
offs_bgn_next = new kbNode( nextline->m_link->GetBeginNode(), m_GC );
nextline->Virtual_Point( offs_bgn_next, factor );
offs_end_next = new kbNode( nextline->m_link->GetEndNode(), m_GC );
nextline->Virtual_Point( offs_end_next, factor );
offs_nextlink = new kbLink( 0, offs_bgn_next, offs_end_next, m_GC );
offs_nextline.Set( offs_nextlink );
offs_currentline.CalculateLineParameters();
offs_nextline.CalculateLineParameters();
offs_currentline.Intersect2( medial_axes_point, &offs_nextline );
double result_offs = sqrt( pow( ( double )GetEndNode()->GetY() - medial_axes_point->GetY(), 2 ) +
pow( ( double )GetEndNode()->GetX() - medial_axes_point->GetX(), 2 ) );
if ( result_offs < fabs( m_GC->GetRoundfactor() * factor ) )
{
*_last_ins = *bu_last_ins;
*offs_end = *medial_axes_point;
delete medial_axes_point;
delete bu_last_ins;
// make a link between the current and the previous and add this to kbGraph
delete offs_nextlink;
shape->AddLink( offs_currentlink );
return( offs_end );
}
else
{ //let us create a circle
*_last_ins = *bu_last_ins;
delete medial_axes_point;
delete bu_last_ins;
kbNode* endarc = new kbNode( offs_bgn_next, m_GC );
shape->AddLink( offs_currentlink );
delete offs_nextlink;
shape->CreateArc( GetEndNode(), &offs_currentline, endarc, fabs( factor ), m_GC->GetInternalCorrectionAber() );
return( endarc );
}
}
bool kbLine::OkeForContour( kbLine* const nextline, double factor, kbNode* LastLeft, kbNode* LastRight, LinkStatus& _outproduct )
{
assert( m_link );
assert( m_valid_parameters );
assert( nextline->m_link );
assert( nextline->m_valid_parameters );
factor = fabs( factor );
// PointStatus status=ON_AREA;
double distance = 0;
kbNode offs_end_next( nextline->m_link->GetEndNode(), m_GC );
_outproduct = m_link->OutProduct( nextline->m_link, m_GC->GetAccur() );
switch ( _outproduct )
{
// current line lies on leftside of prev line
case IS_RIGHT :
{
nextline->Virtual_Point( &offs_end_next, -factor );
// status=
nextline->PointOnLine( LastRight, distance, m_GC->GetAccur() );
if ( distance > factor )
{
PointOnLine( &offs_end_next, distance, m_GC->GetAccur() );
if ( distance > factor )
return( true );
}
}
break;
// current line lies on rightside of prev line
case IS_LEFT :
{
nextline->Virtual_Point( &offs_end_next, factor );
// status=
nextline->PointOnLine( LastLeft, distance, m_GC->GetAccur() );
if ( distance < -factor )
{
PointOnLine( &offs_end_next, distance, m_GC->GetAccur() );
if ( distance < -factor )
return( true );
}
}
break;
// current line lies on prev line
case IS_ON :
{
return( true );
}
}//end switch
return( false );
}
bool kbLine::Create_Ring_Shape( kbLine* nextline, kbNode** _last_ins_left, kbNode** _last_ins_right, double factor, kbGraph *shape )
{
kbNode * _current;
LinkStatus _outproduct = IS_ON;
if ( OkeForContour( nextline, factor, *_last_ins_left, *_last_ins_right, _outproduct ) )
{
switch ( _outproduct )
{
// Line 2 lies on leftside of this line
case IS_RIGHT :
{
*_last_ins_left = OffsetContour_rounded( nextline, *_last_ins_left, factor, shape );
*_last_ins_right = OffsetContour( nextline, *_last_ins_right, -factor, shape );
}
break;
case IS_LEFT :
{
*_last_ins_left = OffsetContour( nextline, *_last_ins_left, factor, shape );
*_last_ins_right = OffsetContour_rounded( nextline, *_last_ins_right, -factor, shape );
}
break;
// Line 2 lies on this line
case IS_ON :
{
// make a node from this point
_current = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( _current, factor );
// make a link between the current and the previous and add this to kbGraph
shape->AddLink( *_last_ins_left, _current );
*_last_ins_left = _current;
_current = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( _current, -factor );
shape->AddLink( *_last_ins_right, _current );
*_last_ins_right = _current;
}
break;
}//end switch
return( true );
}
/* else
{
switch (_outproduct)
{
// Line 2 lies on leftside of this line
case IS_RIGHT :
{
*_last_ins_left =OffsetContour_rounded(nextline,*_last_ins_left,factor,Ishape);
*_last_ins_right =OffsetContour(nextline,*_last_ins_right,-factor,Ishape);
}
break;
case IS_LEFT :
{
*_last_ins_left =OffsetContour(nextline,*_last_ins_left,factor,Ishape);
*_last_ins_right =OffsetContour_rounded(nextline,*_last_ins_right,-factor,Ishape);
}
break;
// Line 2 lies on this line
case IS_ON :
{
// make a node from this point
_current = new kbNode(m_link->GetEndNode());
Virtual_Point(_current,factor);
// make a link between the current and the previous and add this to kbGraph
Ishape->AddLink(*_last_ins_left, _current);
*_last_ins_left=_current;
_current = new kbNode(m_link->GetEndNode());
Virtual_Point(_current,-factor);
Ishape->AddLink(*_last_ins_right, _current);
*_last_ins_right=_current;
}
break;
}//end switch
return(true);
}
*/
return( false );
}
void kbLine::Create_Begin_Shape( kbLine* nextline, kbNode** _last_ins_left, kbNode** _last_ins_right, double factor, kbGraph *shape )
{
factor = fabs( factor );
LinkStatus _outproduct;
_outproduct = m_link->OutProduct( nextline->m_link, m_GC->GetAccur() );
switch ( _outproduct )
{
case IS_RIGHT :
{
*_last_ins_left = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( *_last_ins_left, factor );
*_last_ins_right = new kbNode( nextline->m_link->GetBeginNode(), m_GC );
nextline->Virtual_Point( *_last_ins_right, -factor );
shape->AddLink( *_last_ins_left, *_last_ins_right );
*_last_ins_left = OffsetContour_rounded( nextline, *_last_ins_left, factor, shape );
}
break;
case IS_LEFT :
{
*_last_ins_left = new kbNode( nextline->m_link->GetBeginNode(), m_GC );
nextline->Virtual_Point( *_last_ins_left, factor );
*_last_ins_right = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( *_last_ins_right, -factor );
shape->AddLink( *_last_ins_left, *_last_ins_right );
*_last_ins_right = OffsetContour_rounded( nextline, *_last_ins_right, -factor, shape );
}
break;
// Line 2 lies on this line
case IS_ON :
{
*_last_ins_left = new kbNode( nextline->m_link->GetBeginNode(), m_GC );
Virtual_Point( *_last_ins_left, factor );
*_last_ins_right = new kbNode( nextline->m_link->GetBeginNode(), m_GC );
Virtual_Point( *_last_ins_right, -factor );
shape->AddLink( *_last_ins_left, *_last_ins_right );
}
break;
}//end switch
}
void kbLine::Create_End_Shape( kbLine* nextline, kbNode* _last_ins_left, kbNode* _last_ins_right, double factor, kbGraph *shape )
{
kbNode * _current;
factor = fabs( factor );
LinkStatus _outproduct;
_outproduct = m_link->OutProduct( nextline->m_link, m_GC->GetAccur() );
switch ( _outproduct )
{
case IS_RIGHT :
{
_current = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( _current, -factor );
shape->AddLink( _last_ins_right, _current );
_last_ins_right = _current;
_last_ins_left = OffsetContour_rounded( nextline, _last_ins_left, factor, shape );
shape->AddLink( _last_ins_left, _last_ins_right );
}
break;
case IS_LEFT :
{
_current = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( _current, factor );
shape->AddLink( _last_ins_left, _current );
_last_ins_left = _current;
_last_ins_right = OffsetContour_rounded( nextline, _last_ins_right, -factor, shape );
shape->AddLink( _last_ins_right, _last_ins_left );
}
break;
// Line 2 lies on this line
case IS_ON :
{
_current = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( _current, factor );
shape->AddLink( _last_ins_left, _current );
_last_ins_left = _current;
_current = new kbNode( m_link->GetEndNode(), m_GC );
Virtual_Point( _current, -factor );
shape->AddLink( _last_ins_right, _current );
_last_ins_right = _current;
shape->AddLink( _last_ins_left, _last_ins_right );
}
break;
}//end switch
}
//
// Generate from the found crossings a part of the kbGraph
//
bool kbLine::ProcessCrossings( TDLI<kbLink>* _LI )
{
kbNode * last; kbLink *dummy;
// assert (beginnode && endnode);
if ( !linecrosslist ) return false;
if ( linecrosslist->empty() ) return false;
if ( linecrosslist->count() > 1 ) SortLineCrossings();
m_link->GetEndNode()->RemoveLink( m_link );
last = m_link->GetEndNode();
// Make new links :
while ( !linecrosslist->empty() )
{
dummy = new kbLink( m_link->GetGraphNum(), ( kbNode* ) linecrosslist->tailitem(), last, m_GC );
dummy->SetBeenHere();
dummy->SetGroup( m_link->Group() );
_LI->insbegin( dummy );
last = ( kbNode* )linecrosslist->tailitem();
linecrosslist->removetail();
}
// Recycle this link :
last->AddLink( m_link );
m_link->SetEndNode( last );
delete linecrosslist;
linecrosslist = NULL;
return true;
}
/*
// Sorts the links on the X values
int NodeXYsorter(kbNode* a, kbNode* b)
{
if ( a->GetX() < b->GetX())
return(1);
if ( a->GetX() > b->GetX())
return(-1);
//they are eqaul in x
if ( a->GetY() < b->GetY())
return(-1);
if ( a->GetY() > b->GetY())
return(1);
//they are eqaul in y
return(0);
}
//
// Generate from the found crossings a part of the graph
// this routine is used in combination with the scanbeam class
// the this link most stay at the same place in the sorted graph
// The link is split into peaces wich are inserted sorted into the graph
// on beginnode.
// The mostleft link most become the new link for the beam record
// therefore the mostleft new/old link is returned to become the beam record link
// also the part returned needs to have the bin flag set to the original value it had in the beam
kbLink* kbLine::ProcessCrossingsSmart(TDLI<kbLink>* _LI)
{
kbNode *lastinserted;
kbLink *new_link;
kbLink *returnlink;
assert (beginnode && endnode);
if (!linecrosslist) return this;
if (linecrosslist->empty()) return this;
if (linecrosslist->count()>1)
{
SortLineCrossings();
}
int inbeam;
//most left at the beginnode or endnode
if (NodeXYsorter(beginnode,endnode)==1)
{
//re_use this link
endnode->RemoveLink(this);
linecrosslist->insend(endnode); //the last link to create is towards this node
endnode=(kbNode*) linecrosslist->headitem();
endnode->AddLink(this);
inbeam=NodeXYsorter(_LI->item()->beginnode,beginnode);
switch (inbeam)
{
case -1:
case 0:
bin=true;
break;
case 1:
bin=false;
break;
}
returnlink=this;
lastinserted=endnode;
linecrosslist->removehead();
// Make new links starting at endnode
while (!linecrosslist->empty())
{
new_link=new kbLink(graphnum,lastinserted,(kbNode*) linecrosslist->headitem());
new_link->group=group;
int inbeam=NodeXYsorter(_LI->item()->beginnode,lastinserted);
switch (inbeam)
{
case -1:
{
double x,y,xl,yl;
char buf[80];
x=((kbNode*)(linecrosslist->headitem()))->GetX();
y=((kbNode*)(linecrosslist->headitem()))->GetY();
xl=_LI->item()->beginnode->GetX();
yl=_LI->item()->beginnode->GetY();
sprintf(buf," x=%f , y=%f inserted before %f,%f",x,y,xl,yl);
_messagehandler->info(buf,"scanbeam");
new_link->bin=true;
}
break;
case 0:
new_link->bin=true;
returnlink=new_link;
break;
case 1:
new_link->bin=false;
break;
}
//insert a link into the graph that is already sorted on beginnodes of the links.
//starting at a given position
// if empty then just insert
if (_LI->empty())
_LI->insend(new_link);
else
{
// put new item left of the one that is bigger are equal
int i=0;
int insert=0;
while(!_LI->hitroot())
{
if ((insert=linkXYsorter(new_link,_LI->item()))!=-1)
break;
(*_LI)++;
i++;
}
_LI->insbefore_unsave(new_link);
if (insert==0 && _LI->item()->beginnode!=new_link->beginnode)
//the begin nodes are equal but not the same merge them into one node
{ kbNode* todelete=_LI->item()->beginnode;
new_link->beginnode->Merge(todelete);
delete todelete;
}
//set back iter
(*_LI) << (i+1);
}
lastinserted=(kbNode*)linecrosslist->headitem();
linecrosslist->removehead();
}
}
else
{
//re_use this link
endnode->RemoveLink(this);
linecrosslist->insend(endnode); //the last link to create is towards this node
endnode=(kbNode*) linecrosslist->headitem();
endnode->AddLink(this);
inbeam=NodeXYsorter(_LI->item()->beginnode,endnode);
switch (inbeam)
{
case -1:
case 0:
bin=true;
break;
case 1:
bin=false;
break;
}
returnlink=this;
lastinserted=endnode;
linecrosslist->removehead();
// Make new links starting at endnode
while (!linecrosslist->empty())
{
new_link=new kbLink(graphnum,lastinserted,(kbNode*) linecrosslist->headitem());
new_link->group=group;
inbeam=NodeXYsorter(_LI->item()->beginnode,(kbNode*) linecrosslist->headitem());
switch (inbeam)
{
case -1:
case 0:
new_link->bin=true;
break;
case 1:
new_link->bin=false;
break;
}
inbeam=NodeXYsorter(_LI->item()->beginnode,lastinserted);
switch (inbeam)
{
case -1:
{
double x,y,xl,yl;
char buf[80];
x=lastinserted->GetX();
y=lastinserted->GetY();
xl=_LI->item()->beginnode->GetX();
yl=_LI->item()->beginnode->GetY();
sprintf(buf," x=%f , y=%f inserted before %f,%f",x,y,xl,yl);
_messagehandler->info(buf,"scanbeam");
}
break;
case 0:
break;
case 1:
returnlink=new_link;
break;
}
//insert a link into the graph that is already sorted on beginnodes of the links.
//starting at a given position
// if empty then just insert
if (_LI->empty())
_LI->insend(new_link);
else
{
// put new item left of the one that is bigger are equal
int i=0;
int insert=0;
while(!_LI->hitroot())
{
if ((insert=linkXYsorter(new_link,_LI->item()))!=-1)
break;
(*_LI)++;
i++;
}
_LI->insbefore_unsave(new_link);
if (insert==0 && _LI->item()->beginnode!=new_link->beginnode)
//the begin nodes are equal but not the same merge them into one node
{ kbNode* todelete=_LI->item()->beginnode;
new_link->beginnode->Merge(todelete);
delete todelete;
}
//set back iter
(*_LI) << (i+1);
}
lastinserted=(kbNode*)linecrosslist->headitem();
linecrosslist->removehead();
}
}
delete linecrosslist;
linecrosslist=NULL;
return returnlink;
}
*/
static int NODE_X_ASCENDING_L ( kbNode* a, kbNode* b )
{
if( b->GetX() > a->GetX() ) return( 1 );
else
if( b->GetX() == a->GetX() ) return( 0 );
return( -1 );
}
static int NODE_X_DESCENDING_L( kbNode* a, kbNode* b )
{
if( a->GetX() > b->GetX() ) return( 1 );
else
if( a->GetX() == b->GetX() ) return( 0 );
return( -1 );
}
static int NODE_Y_ASCENDING_L ( kbNode* a, kbNode* b )
{
if( b->GetY() > a->GetY() ) return( 1 );
else
if( b->GetY() == a->GetY() ) return( 0 );
return( -1 );
}
static int NODE_Y_DESCENDING_L( kbNode* a, kbNode* b )
{
if( a->GetY() > b->GetY() ) return( 1 );
else
if( a->GetY() == b->GetY() ) return( 0 );
return( -1 );
}
//
// This function finds out which sortfunction to use with sorting
// the crossings.
//
void kbLine::SortLineCrossings()
{
TDLI<kbNode> I( linecrosslist );
B_INT dx, dy;
dx = babs( m_link->GetEndNode()->GetX() - m_link->GetBeginNode()->GetX() );
dy = babs( m_link->GetEndNode()->GetY() - m_link->GetBeginNode()->GetY() );
if ( dx > dy )
{ // thislink is more horizontal then vertical
if ( m_link->GetEndNode()->GetX() > m_link->GetBeginNode()->GetX() )
I.mergesort( NODE_X_ASCENDING_L );
else
I.mergesort( NODE_X_DESCENDING_L );
}
else
{ // this link is more vertical then horizontal
if ( m_link->GetEndNode()->GetY() > m_link->GetBeginNode()->GetY() )
I.mergesort( NODE_Y_ASCENDING_L );
else
I.mergesort( NODE_Y_DESCENDING_L );
}
}
//
// Adds a cross Node to this. a_node may not be deleted before processing the crossings
//
void kbLine::AddCrossing( kbNode *a_node )
{
if ( a_node == m_link->GetBeginNode() || a_node == m_link->GetEndNode() ) return;
if ( !linecrosslist )
{
linecrosslist = new DL_List<void*>();
linecrosslist->insend( a_node );
}
else
{
TDLI<kbNode> I( linecrosslist );
if ( !I.has( a_node ) )
I.insend( a_node );
}
}
//
// see above
//
kbNode* kbLine::AddCrossing( B_INT X, B_INT Y )
{
kbNode * result = new kbNode( X, Y, m_GC );
AddCrossing( result );
return result;
}
DL_List<void*>* kbLine::GetCrossList()
{
if ( linecrosslist )
return linecrosslist;
return NULL;
}
bool kbLine::CrossListEmpty()
{
if ( linecrosslist )
return linecrosslist->empty();
return true;
}
/*
bool kbLine::HasInCrossList(kbNode *n)
{
if(linecrosslist!=NULL)
{
TDLI<kbNode> I(linecrosslist);
return I.has(n);
}
return false;
}
*/
/*! \file src/link.cpp
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: link.cpp,v 1.4 2009/09/07 19:23:28 titato Exp $
*/
#include "kbool/booleng.h"
#include "kbool/link.h"
#include "kbool/line.h"
#include <math.h>
#include <assert.h>
#include "kbool/node.h"
#include "kbool/graph.h"
#include "kbool/graphlst.h"
int linkXYsorter( kbLink *, kbLink * );
//
// Default constructor
//
kbLink::kbLink( Bool_Engine* GC )
{
_GC = GC;
Reset();
}
//
// This constructor makes this link a valid part of a graph
//
kbLink::kbLink( int graphnr, kbNode *begin, kbNode *end, Bool_Engine* GC )
{
_GC = GC;
Reset();
// Set the references of the node and of this link correct
begin->AddLink( this );
end->AddLink( this );
m_beginnode = begin;
m_endnode = end;
m_graphnum = graphnr;
}
//
// This constructor makes this link a valid part of a graph
//
kbLink::kbLink( kbNode *begin, kbNode *end, Bool_Engine* GC )
{
_GC = GC;
Reset();
// Set the references of the node and of this link correct
begin->AddLink( this );
end->AddLink( this );
m_beginnode = begin;
m_endnode = end;
m_graphnum = 0;
}
//
// Destructor
//
kbLink::~kbLink()
{
UnLink();
}
//
// Checks whether the current algorithm has been on this link
//
bool kbLink::BeenHere()
{
if ( m_bin ) return true;
return false;
}
void kbLink::TakeOverOperationFlags( kbLink* link )
{
m_merge_L = link->m_merge_L;
m_a_substract_b_L = link->m_a_substract_b_L;
m_b_substract_a_L = link->m_b_substract_a_L;
m_intersect_L = link->m_intersect_L;
m_exor_L = link->m_exor_L;
m_merge_R = link->m_merge_R;
m_a_substract_b_R = link->m_a_substract_b_R;
m_b_substract_a_R = link->m_b_substract_a_R;
m_intersect_R = link->m_intersect_R;
m_exor_R = link->m_exor_R;
}
//
// Returns the next link from the argument
//
kbLink* kbLink::Forth( kbNode *node )
{
assert( node == m_beginnode || node == m_endnode );
return node->GetOtherLink( this );
}
//
// Returns the Beginnode
//
kbNode *kbLink::GetBeginNode()
{
return m_beginnode;
}
//
// Returns the endnode
//
kbNode* kbLink::GetEndNode()
{
return m_endnode;
}
kbNode* kbLink::GetLowNode()
{
return ( ( m_beginnode->GetY() < m_endnode->GetY() ) ? m_beginnode : m_endnode );
}
kbNode* kbLink::GetHighNode()
{
return ( ( m_beginnode->GetY() > m_endnode->GetY() ) ? m_beginnode : m_endnode );
}
//
// Returns the graphnumber
//
int kbLink::GetGraphNum()
{
return m_graphnum;
}
bool kbLink::GetInc()
{
return m_Inc;
// if (Inc) return true;
// return false;
}
void kbLink::SetInc( bool inc )
{
m_Inc = inc;
// Inc=0;
// if (inc) Inc=1;
}
bool kbLink::GetLeftA()
{
return m_LeftA;
}
void kbLink::SetLeftA( bool la )
{
m_LeftA = la;
}
bool kbLink::GetLeftB()
{
return m_LeftB;
}
void kbLink::SetLeftB( bool lb )
{
m_LeftB = lb;
}
bool kbLink::GetRightA()
{
return m_RightA;
}
void kbLink::SetRightA( bool ra )
{
m_RightA = ra;
}
bool kbLink::GetRightB()
{
return m_RightB;
}
void kbLink::SetRightB( bool rb )
{
m_RightB = rb;
}
//
// This function is very popular by GP-faults
// It returns the node different from a
//
kbNode* kbLink::GetOther( const kbNode *const a )
{
return ( ( a != m_beginnode ) ? m_beginnode : m_endnode );
}
//
// Is this marked for given operation
//
bool kbLink::IsMarked( BOOL_OP operation )
{
switch ( operation )
{
case( BOOL_OR ): return m_merge_L || m_merge_R;
case( BOOL_AND ): return m_intersect_L || m_intersect_R;
case( BOOL_A_SUB_B ): return m_a_substract_b_L || m_a_substract_b_R;
case( BOOL_B_SUB_A ): return m_b_substract_a_L || m_b_substract_a_R;
case( BOOL_EXOR ): return m_exor_L || m_exor_R;
default: return false;
}
}
bool kbLink::IsMarkedLeft( BOOL_OP operation )
{
switch ( operation )
{
case( BOOL_OR ): return m_merge_L;
case( BOOL_AND ): return m_intersect_L;
case( BOOL_A_SUB_B ): return m_a_substract_b_L;
case( BOOL_B_SUB_A ): return m_b_substract_a_L;
case( BOOL_EXOR ): return m_exor_L;
default: return false;
}
}
bool kbLink::IsMarkedRight( BOOL_OP operation )
{
switch ( operation )
{
case( BOOL_OR ): return m_merge_R;
case( BOOL_AND ): return m_intersect_R;
case( BOOL_A_SUB_B ): return m_a_substract_b_R;
case( BOOL_B_SUB_A ): return m_b_substract_a_R;
case( BOOL_EXOR ): return m_exor_R;
default: return false;
}
}
//
// Is this a hole for given operation
// beginnode must be to the left
bool kbLink::IsHole( BOOL_OP operation )
{
bool topsideA, topsideB;
if ( m_beginnode->GetX() < m_endnode->GetX() ) //going to the right?
{ topsideA = m_RightA; topsideB = m_RightB; }
else
{ topsideA = m_LeftA; topsideB = m_LeftB; }
switch ( operation )
{
case( BOOL_OR ): return ( !topsideB && !topsideA );
case( BOOL_AND ): return ( !topsideB || !topsideA );
case( BOOL_A_SUB_B ): return ( topsideB || !topsideA );
case( BOOL_B_SUB_A ): return ( topsideA || !topsideB );
case( BOOL_EXOR ): return !( ( topsideB && !topsideA ) || ( !topsideB && topsideA ) );
default: return false;
}
}
//
// Is this a part of a hole
//
bool kbLink::GetHole()
{
return ( m_hole );
}
void kbLink::SetHole( bool h )
{
m_hole = h;
}
//
// Is this not marked at all
//
bool kbLink::IsUnused()
{
return
!( m_merge_L || m_merge_R ||
m_a_substract_b_L || m_a_substract_b_R ||
m_b_substract_a_L || m_b_substract_a_R ||
m_intersect_L || m_intersect_R ||
m_exor_L || m_exor_R );
}
bool kbLink::IsZero( B_INT marge )
{
return ( m_beginnode->Equal( m_endnode, marge ) ) ;
}
bool kbLink::ShorterThan( B_INT marge )
{
return ( m_beginnode->ShorterThan( m_endnode, marge ) ) ;
}
//
// Mark this link
//
void kbLink::Mark()
{
m_mark = true;
}
#ifndef ABS
#define ABS(a) (((a)<0) ? -(a) : (a))
#endif
//
// This makes from the begin and endnode one node (argument begin_or_end_node)
// The references to this link in the node will also be deleted
// After doing that, link link can be deleted or be recycled.
//
void kbLink::MergeNodes( kbNode *const begin_or_end_node )
{
// assert(beginnode && endnode);
// assert ((begin_or_end_node == beginnode)||(begin_or_end_node == endnode));
m_beginnode->RemoveLink( this );
m_endnode->RemoveLink( this );
if ( m_endnode != m_beginnode )
{ // only if beginnode and endnode are different nodes
begin_or_end_node->Merge( GetOther( begin_or_end_node ) );
}
m_endnode = NULL;
m_beginnode = NULL;
}
//
// Return the position of the second link compared to this link
// Result = IS_ON | IS_LEFT | IS_RIGHT
// Here Left and Right is defined as being left or right from
// the this link towards the center (common) node
//
LinkStatus kbLink::OutProduct( kbLink* const two, double accur )
{
kbNode * center;
double distance;
if ( two->GetBeginNode()->Equal( two->GetEndNode(), 1 ) )
assert( !two );
if ( GetBeginNode()->Equal( GetEndNode(), 1 ) )
assert( !this );
kbLine* temp_line = new kbLine( this, _GC );
//the this link should connect to the other two link at at least one node
if ( m_endnode == two->m_endnode || m_endnode == two->m_beginnode )
center = m_endnode;
else
{
center = m_beginnode;
// assert(center==two->endnode || center==two->beginnode);
}
//here something tricky
// the factor 10000.0 is needed to asure that the pointonline
// is more accurate in this case compared to the intersection for graphs
int uitp = temp_line->PointOnLine( two->GetOther( center ), distance, accur );
delete temp_line;
/*double uitp= (_x - first._x) * (third._y - _y) -
(_y - first._y) * (third._x - _x);
if (uitp>0) return IS_LEFT;
if (uitp<0) return IS_RIGHT;
return IS_ON;*/
//depending on direction of this link (going to or coming from centre)
if ( center == m_endnode )
{
if ( uitp == LEFT_SIDE )
return IS_LEFT;
if ( uitp == RIGHT_SIDE )
return IS_RIGHT;
}
else //center=beginnode
{
if ( uitp == LEFT_SIDE )
return IS_RIGHT;
if ( uitp == RIGHT_SIDE )
return IS_LEFT;
}
return IS_ON;
}
//
// Return the position of the third link compared to this link and
// the second link
// Result = IS_ON | IS_LEFT | IS_RIGHT
//
LinkStatus kbLink::PointOnCorner( kbLink* const two, kbLink* const third )
{
LinkStatus
TwoToOne, // Position of two to this line
ThirdToOne, // Position of third to this line
ThirdToTwo, // Position of third to two
Result;
//m kbNode* center;
//the this link should connect to the other two link at at least one node
//m if (endnode==two->endnode || endnode==two->beginnode)
//m center=endnode;
//m else
//m { center=beginnode;
// assert(center==two->endnode || center==two->beginnode);
//m }
// assert(center==third->endnode || center==third->beginnode);
// Calculate the position of the links compared to eachother
TwoToOne = OutProduct( two, _GC->GetAccur() );
ThirdToOne = OutProduct( third, _GC->GetAccur() );
//center is used in outproduct to give de direction of two
// this is why the result should be swapped
ThirdToTwo = two->OutProduct( third, _GC->GetAccur() );
if ( ThirdToTwo == IS_RIGHT )
ThirdToTwo = IS_LEFT;
else if ( ThirdToTwo == IS_LEFT )
ThirdToTwo = IS_RIGHT;
// Select the result
switch( TwoToOne )
{
// Line 2 lies on leftside of this line
case IS_LEFT : if ( ( ThirdToOne == IS_RIGHT ) || ( ThirdToTwo == IS_RIGHT ) ) return IS_RIGHT;
else if ( ( ThirdToOne == IS_LEFT ) && ( ThirdToTwo == IS_LEFT ) ) return IS_LEFT;
else Result = IS_ON; break;
// Line 2 lies on this line
case IS_ON : if ( ( ThirdToOne == IS_RIGHT ) && ( ThirdToTwo == IS_RIGHT ) ) return IS_RIGHT;
else if ( ( ThirdToOne == IS_LEFT ) && ( ThirdToTwo == IS_LEFT ) ) return IS_LEFT;
// else if ((ThirdToOne==IS_RIGHT) && (ThirdToTwo==IS_LEFT)) return IS_RIGHT;
// else if ((ThirdToOne==IS_LEFT) && (ThirdToTwo==IS_RIGHT)) return IS_LEFT;
else Result = IS_ON; break;
// Line 2 lies on right side of this line
case IS_RIGHT : if ( ( ThirdToOne == IS_RIGHT ) && ( ThirdToTwo == IS_RIGHT ) ) return IS_RIGHT;
else if ( ( ThirdToOne == IS_LEFT ) || ( ThirdToTwo == IS_LEFT ) ) return IS_LEFT;
else Result = IS_ON; break;
default: Result = IS_ON; assert( false );
}
return Result;
}
//
// Remove the reference from this link to a_node
//
void kbLink::Remove( kbNode *a_node )
{
( m_beginnode == a_node ) ? m_beginnode = NULL : m_endnode = NULL;
}
//
// Replace oldnode by newnode and correct the references
//
void kbLink::Replace( kbNode *oldnode, kbNode *newnode )
{
if ( m_beginnode == oldnode )
{
m_beginnode->RemoveLink( this ); // remove the reference to this
newnode->AddLink( this ); // let newnode refer to this
m_beginnode = newnode; // let this refer to newnode
}
else
{ //assert(endnode==oldnode);
m_endnode->RemoveLink( this );
newnode->AddLink( this );
m_endnode = newnode;
}
}
//
// Reset all values
//
void kbLink::Reset()
{
m_beginnode = 0;
m_endnode = 0;
Reset_flags();
}
//
// Reset all flags
//
void kbLink::Reset_flags()
{
m_bin = false; // Marker for walking over the graph
m_hole = false; // Is this a part of hole ?
m_hole_top = false; // link that is toplink of hole?
m_group = GROUP_A; // Does this belong to group A or B ( o.a. for boolean operations between graphs)
m_LeftA = false; // Is left in polygongroup A
m_RightA = false; // Is right in polygon group A
m_LeftB = false; // Is left in polygon group B
m_RightB = false; // Is right in polygongroup B
m_mark = false; // General purose marker, internally unused
m_holelink = false;
m_merge_L = m_merge_R = false; // Marker for Merge
m_a_substract_b_L = m_a_substract_b_R = false; // Marker for substract
m_b_substract_a_L = m_b_substract_a_R = false; // Marker for substract
m_intersect_L = m_intersect_R = false; // Marker for intersect
m_exor_L = m_exor_R = false; // Marker for Exor
}
//
// Refill this link by the arguments
//
void kbLink::Reset( kbNode *begin, kbNode *end, int graphnr )
{
// Remove all the previous references
UnLink();
Reset();
// Set the references of the node and of this link correct
begin->AddLink( this );
end->AddLink( this );
m_beginnode = begin;
m_endnode = end;
if ( graphnr != 0 )
m_graphnum = graphnr;
}
void kbLink::Set( kbNode *begin, kbNode *end )
{
m_beginnode = begin;
m_endnode = end;
}
void kbLink::SetBeenHere()
{
m_bin = true;
}
void kbLink::SetNotBeenHere()
{
m_bin = false;
}
void kbLink::SetBeginNode( kbNode* new_node )
{
m_beginnode = new_node;
}
void kbLink::SetEndNode( kbNode* new_node )
{
m_endnode = new_node;
}
//
// Sets the graphnumber to argument num
//
void kbLink::SetGraphNum( int num )
{
m_graphnum = num;
}
GroupType kbLink::Group()
{
return m_group;
}
//
// Reset the groupflag to argument groep
//
void kbLink::SetGroup( GroupType groep )
{
m_group = groep;
}
//
// Remove all references to this link and from this link
//
void kbLink::UnLink()
{
if ( m_beginnode )
{
m_beginnode->RemoveLink( this );
if ( !m_beginnode->GetNumberOfLinks() ) delete m_beginnode;
}
m_beginnode = NULL;
if ( m_endnode )
{
m_endnode->RemoveLink( this );
if ( !m_endnode->GetNumberOfLinks() ) delete m_endnode;
}
m_endnode = NULL;
}
void kbLink::UnMark()
{
m_mark = false;
m_bin = false;
}
void kbLink::SetMark( bool value )
{
m_mark = value;
}
//
// general purpose mark checker
//
bool kbLink::IsMarked() { return m_mark; }
void kbLink::SetTopHole( bool value ) { m_hole_top = value; }
bool kbLink::IsTopHole() { return m_hole_top; }
//
// Calculates the merge/substact/exor/intersect flags
//
void kbLink::SetLineTypes()
{
m_merge_R =
m_a_substract_b_R =
m_b_substract_a_R =
m_intersect_R =
m_exor_R =
m_merge_L =
m_a_substract_b_L =
m_b_substract_a_L =
m_intersect_L =
m_exor_L = false;
//if left side is in group A and B then it is for the merge
m_merge_L = m_LeftA || m_LeftB;
m_merge_R = m_RightA || m_RightB;
//both in mean does not add to result.
if ( m_merge_L && m_merge_R )
m_merge_L = m_merge_R = false;
m_a_substract_b_L = m_LeftA && !m_LeftB;
m_a_substract_b_R = m_RightA && !m_RightB;
//both in mean does not add to result.
if ( m_a_substract_b_L && m_a_substract_b_R )
m_a_substract_b_L = m_a_substract_b_R = false;
m_b_substract_a_L = m_LeftB && !m_LeftA;
m_b_substract_a_R = m_RightB && !m_RightA;
//both in mean does not add to result.
if ( m_b_substract_a_L && m_b_substract_a_R )
m_b_substract_a_L = m_b_substract_a_R = false;
m_intersect_L = m_LeftB && m_LeftA;
m_intersect_R = m_RightB && m_RightA;
//both in mean does not add to result.
if ( m_intersect_L && m_intersect_R )
m_intersect_L = m_intersect_R = false;
m_exor_L = !( ( m_LeftB && m_LeftA ) || ( !m_LeftB && !m_LeftA ) );
m_exor_R = !( ( m_RightB && m_RightA ) || ( !m_RightB && !m_RightA ) );
//both in mean does not add to result.
if ( m_exor_L && m_exor_R )
m_exor_L = m_exor_R = false;
}
//put in direction with a_node as beginnode
void kbLink::Redirect( kbNode* a_node )
{
if ( a_node != m_beginnode )
{
// swap the begin- and endnode of the current link
kbNode * dummy = m_beginnode;
m_beginnode = m_endnode;
m_endnode = dummy;
bool swap = m_LeftA;
m_LeftA = m_RightA;
m_RightA = swap;
swap = m_LeftB;
m_LeftB = m_RightB;
m_RightB = swap;
swap = m_merge_L ;
m_merge_L = m_merge_R;
m_merge_R = swap;
swap = m_a_substract_b_L;
m_a_substract_b_L = m_a_substract_b_R;
m_a_substract_b_R = swap;
swap = m_b_substract_a_L;
m_b_substract_a_L = m_b_substract_a_R;
m_b_substract_a_R = swap;
swap = m_intersect_L;
m_intersect_L = m_intersect_R;
m_intersect_R = swap;
swap = m_exor_L;
m_exor_L = m_exor_R;
m_exor_R = swap;
}
}
/*! \file src/lpoint.cpp
\brief Definition of GDSII kbLPoint type structure
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: lpoint.cpp,v 1.4 2009/09/10 17:04:09 titato Exp $
*/
#include "kbool/lpoint.h"
#include <math.h>
// Constructors
kbLPoint::kbLPoint()
{
_x = 0;
_y = 0;
}
kbLPoint::kbLPoint( B_INT const X, B_INT const Y )
{
_x = X;
_y = Y;
}
kbLPoint::kbLPoint( kbLPoint* const a_point )
{
if ( !a_point )
throw Bool_Engine_Error( "Cannot copy a NULL Point Object.\n\nCould not create a kbLPoint Object.",
"Fatal Creation Error", 0, 1 );
_x = a_point->_x;
_y = a_point->_y;
}
B_INT kbLPoint::GetX()
{
return _x;
}
B_INT kbLPoint::GetY()
{
return _y;
}
void kbLPoint::SetX( B_INT a_point_x )
{
_x = a_point_x;
}
void kbLPoint::SetY( B_INT a_point_y )
{
_y = a_point_y;
}
kbLPoint kbLPoint::GetPoint()
{
return * this;
}
void kbLPoint::Set( const B_INT X, const B_INT Y )
{
_x = X;
_y = Y;
}
void kbLPoint::Set( const kbLPoint &a_point )
{
_x = a_point._x;
_y = a_point._y;
}
bool kbLPoint::Equal( const kbLPoint a_point, B_INT Marge )
{
B_INT delta_x, delta_y;
delta_x = babs( ( _x - a_point._x ) );
delta_y = babs( ( _y - a_point._y ) );
if ( ( delta_x <= Marge ) && ( delta_y <= Marge ) )
return true;
else
return false;
}
bool kbLPoint::Equal( const B_INT X, const B_INT Y, B_INT Marge )
{
return ( bool )( ( babs( _x - X ) <= Marge ) && ( babs( _y - Y ) <= Marge ) );
}
bool kbLPoint::ShorterThan( const kbLPoint a_point, B_INT Marge )
{
double a, b;
a = ( double ) ( a_point._x - _x );
a *= a;
b = ( double ) ( a_point._y - _y );
b *= b;
return ( bool ) ( ( a + b ) <= Marge * Marge ? true : false ) ;
}
bool kbLPoint::ShorterThan( const B_INT X, const B_INT Y, B_INT Marge )
{
double a, b;
a = ( double ) ( X - _x );
a *= a;
b = ( double ) ( Y - _y );
b *= b;
return ( bool ) ( a + b <= Marge * Marge ? true : false ) ;
}
// overload the assign (=) operator
// usage : a_point = another_point;
kbLPoint &kbLPoint::operator=( const kbLPoint &other_point )
{
_x = other_point._x;
_y = other_point._y;
return *this;
}
// overload the + operator
// usage : a_point = point1 + point2;
kbLPoint &kbLPoint::operator+( const kbLPoint &other_point )
{
_x += other_point._x;
_y += other_point._y;
return *this;
}
// overload the - operator
// usage : a_point = point1 - point2;
kbLPoint &kbLPoint::operator-( const kbLPoint &other_point )
{
_x -= other_point._x;
_y -= other_point._y;
return *this;
}
// overload the * operator
// usage: a_point = point1 * 100;
kbLPoint &kbLPoint::operator*( int factor )
{
_x *= factor;
_y *= factor;
return *this;
}
// overload the / operator
// usage: a_point = point1 / 100;
kbLPoint &kbLPoint::operator/( int factor )
{
_x /= factor;
_y /= factor;
return *this;
}
// overload the compare (==) operator
// usage: if (point1 == point2) { };
int kbLPoint::operator==( const kbLPoint &other_point ) const
{
return ( ( other_point._x == _x ) && ( other_point._y == _y ) );
}
// overload the diffrent (!=) operator
// usage: if (point1 != point2) { };
int kbLPoint::operator!=( const kbLPoint &other_point ) const
{
return ( ( other_point._x != _x ) || ( other_point._y != _y ) );
}
/*! \file src/node.cpp
\brief Holds a GDSII node structure
\author Klaas Holwerda
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: node.cpp,v 1.7 2009/09/14 16:50:12 titato Exp $
*/
#include "kbool/node.h"
#include "kbool/link.h"
#include "kbool/line.h"
#include <math.h>
//this here is to initialize the static iterator of node
//with NOLIST constructor
//TDLI<kbLink> kbNode::_linkiter=TDLI<kbLink>(_GC);
kbNode::kbNode( Bool_Engine* GC ) : kbLPoint( 0, 0 )
{
_GC = GC;
_linklist = new DL_List<void*>();
}
kbNode::kbNode( B_INT const X, B_INT const Y, Bool_Engine* GC ) : kbLPoint( X, Y )
{
_GC = GC;
_linklist = new DL_List<void*>();
}
kbNode::kbNode( kbLPoint* const a_point, Bool_Engine* GC ) : kbLPoint( a_point )
{
_GC = GC;
_linklist = new DL_List<void*>();
}
//kbNode::kbNode(kbNode * const other) : kbLPoint(other)
kbNode::kbNode( kbNode * const other, Bool_Engine* GC )
{
_GC = GC;
_x = other->_x;
_y = other->_y;
_linklist = new DL_List<void*>();
}
kbNode& kbNode::operator=( const kbNode &other_node )
{
_x = other_node._x;
_y = other_node._y;
return *this;
}
// x and y of the point will be rounded to the nearest
// xnew=N*grid and ynew=N*grid
void kbNode::RoundInt( B_INT grid )
{
_x = ( B_INT ) floor( ( _x + grid * 0.5 ) / grid ) * grid;
_y = ( B_INT ) floor( ( _y + grid * 0.5 ) / grid ) * grid;
}
kbNode::~kbNode()
{
delete _linklist;
}
DL_List<void*>* kbNode::GetLinklist()
{
return _linklist;
}
void kbNode::AddLink( kbLink *a_link )
{
// assert(a_link);
_linklist->insbegin( a_link );
}
kbLink* kbNode::GetIncomingLink()
{
if ( ( ( kbLink* )_linklist->headitem() )->GetEndNode() == this )
return ( kbLink* )_linklist->headitem();
else
return ( kbLink* )_linklist->tailitem();
}
kbLink* kbNode::GetOutgoingLink()
{
if ( ( ( kbLink* )_linklist->headitem() )->GetBeginNode() == this )
return ( kbLink* )_linklist->headitem();
else
return ( kbLink* )_linklist->tailitem();
}
//
// Returns the number of connected links
//
int kbNode::GetNumberOfLinks()
{
return _linklist->count();
}
kbLink* kbNode::GetOtherLink( kbLink* prev )
{
if ( prev == ( kbLink* )_linklist->headitem() )
return ( kbLink* )_linklist->tailitem();
if ( prev == ( kbLink* )_linklist->tailitem() )
return ( kbLink* )_linklist->headitem();
return NULL;
}
int kbNode::Merge( kbNode *other )
{
if ( this == other ) //they are already merged dummy
return 0;
_GC->_linkiter->Attach( _linklist );
int Counter;
// used to delete Iterator on other->_linklist
// otherwise there can't be a takeover, because for takeover there can't
// be an iterator on other->_linklist;
{
TDLI<kbLink> Iother( other->_linklist );
kbLink* temp;
Counter = Iother.count();
Iother.tohead();
while ( !Iother.hitroot() )
{
temp = Iother.item();
//need to test both nodes because it may be a zero length link
if ( temp->GetEndNode() == other )
temp->SetEndNode( this );
if ( temp->GetBeginNode() == other )
temp->SetBeginNode( this );
Iother++;
}
_GC->_linkiter->takeover( &Iother );
}
_GC->_linkiter->Detach();
//at this moment the other nodes has no link pointing to it so it needs to be deleted
delete other;
return Counter;
}
void kbNode::RemoveLink( kbLink *a_link )
{
// assert(a_link);
_GC->_linkiter->Attach( _linklist );
if ( _GC->_linkiter->toitem( a_link ) ) // find the link
_GC->_linkiter->remove();
_GC->_linkiter->Detach();
}
// This function will determinate if the given three points
// can be simplified to two points
//
// input : three nodes, the first and the second must be points of
// a line in correct order, the third point is a point of another
// line.
// output: -
// return: true if points can be simplified
// false if points can't be simplified
bool kbNode::Simplify( kbNode *First, kbNode *Second, B_INT Marge )
{
double distance = 0;
// The first and second point are a zero line, if so we can
// make a line between the first and third point
if ( First->Equal( Second, Marge ) )
return true;
// Are the first and third point equal, if so
// we can delete the second point
if ( First->Equal( this, Marge ) )
return true;
// Used tmp_link.set here, because the link may not be linked in the graph,
// because the point of the graphs are used, after use of the line we have
//to set the link to zero so the nodes will not be destructed by exit of the function
kbLink tmp_link( _GC );
tmp_link.Set( First, Second );
kbLine tmp_line( _GC );
tmp_line.Set( &tmp_link );
// If third point is on the same line which is made from the first
// and second point then we can delete the second point
if ( tmp_line.PointOnLine( this, distance, ( double ) Marge ) == ON_AREA )
{
tmp_link.Set( NULL, NULL );
return true;
}
//
//
tmp_link.Set( Second, this );
tmp_line.Set( &tmp_link );
if ( tmp_line.PointOnLine( First, distance, ( double ) Marge ) == ON_AREA )
{
tmp_link.Set( NULL, NULL );
return true;
}
tmp_link.Set( NULL, NULL );
return false;
}
kbLink* kbNode::GetNextLink()
{
int Aantal = _linklist->count();
// assert (Aantal != 0);
// there is one link, so there is no previous link
if ( Aantal == 1 )
return NULL;
int Marked_Counter = 0;
kbLink *the_link = NULL;
// count the marked links
_GC->_linkiter->Attach( _linklist );
_GC->_linkiter->tohead();
while ( !_GC->_linkiter->hitroot() )
{
if ( _GC->_linkiter->item()->IsMarked() )
Marked_Counter++;
else
{
if ( !the_link )
the_link = _GC->_linkiter->item();
}
( *_GC->_linkiter )++;
}
_GC->_linkiter->Detach();
if ( Aantal - Marked_Counter != 1 )
// there arent two unmarked links
return NULL;
else
{
if ( the_link->GetBeginNode() == this )
return the_link;
else
return NULL;
}
}
kbLink* kbNode::GetPrevLink()
{
int Aantal;
if ( !_linklist )
return NULL;
Aantal = _linklist->count();
// assert (Aantal != 0);
// there is one link, so there is no previous link
if ( Aantal == 1 )
return NULL;
int Marked_Counter = 0;
kbLink *the_link = NULL;
_GC->_linkiter->Attach( _linklist );
// count the marked links
_GC->_linkiter->tohead();
while ( !_GC->_linkiter->hitroot() )
{
if ( _GC->_linkiter->item()->IsMarked() )
Marked_Counter++;
else
{
if ( !the_link )
the_link = _GC->_linkiter->item();
}
( *_GC->_linkiter )++;
}
_GC->_linkiter->Detach();
if ( Aantal - Marked_Counter != 1 )
// there arent two unmarked links
return NULL;
else
{
if ( the_link->GetEndNode() == this )
return the_link;
else
return NULL;
}
}
bool kbNode::SameSides( kbLink* const prev , kbLink* const link, BOOL_OP operation )
{
bool directedLeft;
bool directedRight;
if ( prev->GetEndNode() == this ) //forward direction
{
directedLeft = prev->IsMarkedLeft( operation );
directedRight = prev->IsMarkedRight( operation );
if ( link->GetBeginNode() == this ) //forward direction
{
return directedLeft == link->IsMarkedLeft( operation ) &&
directedRight == link->IsMarkedRight( operation );
}
return directedLeft == link->IsMarkedRight( operation ) &&
directedRight == link->IsMarkedLeft( operation );
}
directedLeft = prev->IsMarkedRight( operation );
directedRight = prev->IsMarkedLeft( operation );
if ( link->GetBeginNode() == this ) //forward direction
{
return directedLeft == link->IsMarkedLeft( operation ) &&
directedRight == link->IsMarkedRight( operation );
}
return directedLeft == link->IsMarkedRight( operation ) &&
directedRight == link->IsMarkedLeft( operation );
}
// on the node get the link
// is the most right or left one
// This function is used to collect the simple graphs from a graph
kbLink* kbNode::GetMost( kbLink* const prev , LinkStatus whatside, BOOL_OP operation )
{
kbLink * reserve = 0;
kbLink *Result = NULL, *link;
kbNode* prevbegin = prev->GetOther( this );
if ( _linklist->count() == 2 ) // only two links to this node take the one != prev
{
if ( ( link = ( kbLink* )_linklist->headitem() ) == prev ) //this is NOT the one to go on
link = ( kbLink* )_linklist->tailitem();
if ( !link->BeenHere() && SameSides( prev, link, operation ) )
//we are back where we started (bin is true) return Null
return link;
return( 0 );
}
_GC->_linkiter->Attach( _linklist );
_GC->_linkiter->tohead();
//more then 2 links to the kbNode
while( !_GC->_linkiter->hitroot() )
{
link = _GC->_linkiter->item();
if ( !link->BeenHere() &&
SameSides( prev, link, operation ) &&
link != prev //should be set to bin already
)
{
if ( prevbegin == link->GetOther( this ) )//pointers equal
//we are going back in the same direction on a parallel link
//only take this possibility if nothing else is possible
reserve = link;
else
{ //this link is in a different direction
if ( !Result )
Result = link; //first one found sofar
else
{
if ( prev->PointOnCorner( Result, link ) == whatside )
//more to the whatside than take this one
Result = link;
}
}
}
( *_GC->_linkiter )++;
}
// if there is a next link found return it
// else if a parallel link is found return that one
// else return NULL
_GC->_linkiter->Detach();
return ( ( Result ) ? Result : reserve );
}
// on the node get the link
// is the most right or left one
// This function is used to collect the simple graphs from a graph
kbLink* kbNode::GetMostHole( kbLink* const prev, LinkStatus whatside, BOOL_OP operation, bool searchholelink )
{
kbLink * reserve = 0;
kbLink *Result = NULL, *link;
kbNode* prevbegin = prev->GetOther( this );
if ( _linklist->count() == 2 ) // only two links to this node take the one != prev
{
if ( ( link = ( kbLink* )_linklist->headitem() ) == prev ) //this is NOT the one to go on
link = ( kbLink* )_linklist->tailitem();
if (
!link->BeenHere() &&
link->GetHole() &&
( searchholelink && link->GetHoleLink() || !link->GetHoleLink() ) &&
SameSides( prev, link, operation ) )
//we are back where we started (bin is true) return Null
return link;
return( 0 );
}
_GC->_linkiter->Attach( _linklist );
_GC->_linkiter->tohead();
//more then 2 links to the kbNode
while( !_GC->_linkiter->hitroot() )
{
link = _GC->_linkiter->item();
if (
!link->BeenHere() &&
link->GetHole() &&
( searchholelink && link->GetHoleLink() || !link->GetHoleLink() ) &&
SameSides( prev, link, operation ) &&
link != prev //should be set to bin already
)
{
if ( prevbegin == link->GetOther( this ) )//pointers equal
//we are going back in the same direction on a parallel link
//only take this possibility if nothing else is possible
reserve = link;
else
{ //this link is in a different direction
if ( !Result )
Result = link; //first one found sofar
else
{
if ( prev->PointOnCorner( Result, link ) == whatside )
//more to the whatside than take this one
Result = link;
}
}
}
( *_GC->_linkiter )++;
}
// if there is a next link found return it
// else if a parallel link is found return that one
// else return NULL
_GC->_linkiter->Detach();
return ( ( Result ) ? Result : reserve );
}
// this function gets the highest not flat link
kbLink* kbNode::GetHoleLink( kbLink* const prev, LinkStatus whatside, bool checkbin, BOOL_OP operation )
{
kbLink * Result = NULL, *link;
_GC->_linkiter->Attach( _linklist );
for( _GC->_linkiter->tohead();!_GC->_linkiter->hitroot();( *_GC->_linkiter )++ )
{
link = _GC->_linkiter->item();
if ( link->GetHoleLink() &&
( !checkbin || ( checkbin && !link->BeenHere() ) ) &&
SameSides( prev, link, operation )
)
{
if ( !Result )
Result = link; //first one found sofar
else
{
if ( prev->PointOnCorner( Result, link ) == whatside )
//more to the whatside than take this one
Result = link;
}
}
}
_GC->_linkiter->Detach();
return ( Result );
}
// this function gets the highest not flat link
kbLink* kbNode::GetNotFlat()
{
kbLink * Result = NULL, *link;
_GC->_linkiter->Attach( _linklist );
double tangold = 0.0;
double tangnew = 0.0;
for( _GC->_linkiter->tohead();!_GC->_linkiter->hitroot();( *_GC->_linkiter )++ )
{
link = _GC->_linkiter->item();
if ( !_GC->_linkiter->item()->BeenHere() )
{
B_INT dx = link->GetOther( this )->GetX() - _x;
B_INT dy = link->GetOther( this )->GetY() - _y;
if ( dx != 0 )
{
tangnew = fabs( ( double ) dy / ( double ) dx );
}
else
{
tangnew = MAXDOUBLE;
}
if ( !Result )
{
//this link is in a different direction
Result = link; //first one found sofar
tangold = tangnew;
}
else
{
if( tangnew < tangold )
{
//this one is higher (more horizontal) then the old Result
Result = link;
tangold = tangnew;
}
}
}
}
// if there is a next link found return it
// else if a parallel link is found return that one
// else return NULL
_GC->_linkiter->Detach();
return ( Result );
}
// on the node get the link that is not BIN
// and that has the same graphnumber and is in same direction
kbLink *kbNode::Follow( kbLink* const prev )
{
kbLink * temp;
_GC->_linkiter->Attach( _linklist );
_GC->_linkiter->tohead();
while( !_GC->_linkiter->hitroot() )
{
if ( ( _GC->_linkiter->item() != prev ) &&
( !_GC->_linkiter->item()->BeenHere() ) &&
( _GC->_linkiter->item()->GetGraphNum() == prev->GetGraphNum() ) &&
(
( ( prev->GetEndNode() == this ) &&
( _GC->_linkiter->item()->GetEndNode() != this )
)
||
( ( prev->GetBeginNode() == this ) &&
( _GC->_linkiter->item()->GetBeginNode() != this )
)
)
)
{
temp = _GC->_linkiter->item();
_GC->_linkiter->Detach();
return( temp );
}
( *_GC->_linkiter )++;
}
_GC->_linkiter->Detach();
return ( 0 );
}
// this function gets the highest (other node) link ascending from the node
// that has the bin flag set as the argument binset
// if no such link exists return 0
kbLink* kbNode::GetBinHighest( bool binset )
{
kbLink * Result = NULL, *link;
_GC->_linkiter->Attach( _linklist );
double tangold = 0.0;
double tangnew = 0.0;
for( _GC->_linkiter->tohead();!_GC->_linkiter->hitroot();( *_GC->_linkiter )++ )
{
link = _GC->_linkiter->item();
if ( _GC->_linkiter->item()->BeenHere() == binset )
{
B_INT dx = link->GetOther( this )->GetX() - _x;
B_INT dy = link->GetOther( this )->GetY() - _y;
if ( dx != 0 )
{
tangnew = ( double ) dy / ( double ) dx;
}
else if ( dy > 0 )
{
tangnew = MAXDOUBLE;
}
else
{
tangnew = -MAXDOUBLE;
}
if ( !Result )
{
Result = link; //first one found sofar
tangold = tangnew;
}
else
{
if( tangnew > tangold )
{
//this one is higher then the old Result
Result = link;
tangold = tangnew;
}
}
}
}
// if there is a link found return it
// else return NULL
_GC->_linkiter->Detach();
return ( Result );
}
/*! \file src/record.cpp
\author Klaas Holwerda or Julian Smart
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: record.cpp,v 1.5 2009/09/10 17:04:09 titato Exp $
*/
#include "kbool/booleng.h"
#include "kbool/record.h"
#include "kbool/node.h"
#include <stdlib.h>
#include <math.h>
#define LNK _line.GetLink()
//int r_index=-1;
//void* _Record_Pool[30];
//void DeleteRecordPool()
//{
// while (r_index!=-1)
// {
// free( _Record_Pool[r_index--]);
// }
//}
kbRecord::~kbRecord()
{}
//void* kbRecord::operator new(size_t size)
//{
//
// if (r_index!=-1)
// {
// return _Record_Pool[r_index--];
// }
//
// return malloc(size);
//}
//void kbRecord::operator delete(void* recordptr)
//{
//
// if (r_index < 28)
// {
// _Record_Pool[++r_index]= recordptr;
// return;
// }
//
// free (recordptr);
//}
//void kbRecord::deletepool()
//{
//
// while (r_index!=-1)
// {
// free( _Record_Pool[r_index--]);
// }
//}
kbRecord::kbRecord( kbLink* link, Bool_Engine* GC )
: _line( GC )
{
_GC = GC;
_dir = GO_RIGHT;
_a = 0;
_b = 0;
_line.Set( link );
_line.CalculateLineParameters();
}
//when the dimensions of a link for a record changes, its line parameters need to be recalculated
void kbRecord::SetNewLink( kbLink* link )
{
_line.Set( link );
_line.CalculateLineParameters();
}
//for beams calculate the ysp on the low scanline
void kbRecord::Calc_Ysp( kbNode* low )
{
if ( ( LNK->GetEndNode() == low ) || ( LNK->GetBeginNode() == low ) )
{
_ysp = low->GetY();
return;
}
if ( LNK->GetEndNode()->GetX() == LNK->GetBeginNode()->GetX() )
_ysp = low->GetY(); //flatlink only in flatbeams
else if ( LNK->GetEndNode()->GetX() == low->GetX() )
_ysp = LNK->GetEndNode()->GetY();
else if ( LNK->GetBeginNode()->GetX() == low->GetX() )
_ysp = LNK->GetBeginNode()->GetY();
else
_ysp = _line.Calculate_Y_from_X( low->GetX() );
}
//to set the _dir for new links in the beam
void kbRecord::Set_Flags()
{
if ( LNK->GetEndNode()->GetX() == LNK->GetBeginNode()->GetX() ) //flatlink ?
{ //only happens in flat beams
if ( LNK->GetEndNode()->GetY() < LNK->GetBeginNode()->GetY() )
_dir = GO_RIGHT;
else
_dir = GO_LEFT;
}
else
{
if ( LNK->GetEndNode()->GetX() > LNK->GetBeginNode()->GetX() )
_dir = GO_RIGHT;
else
_dir = GO_LEFT;
}
}
kbLink* kbRecord::GetLink()
{
return LNK;
}
B_INT kbRecord::Ysp()
{
return _ysp;
}
void kbRecord::SetYsp( B_INT ysp )
{
_ysp = ysp;
}
DIRECTION kbRecord::Direction()
{
return DIRECTION( _dir );
}
bool kbRecord::Calc_Left_Right( kbRecord* record_above_me )
{
bool par = false;
if ( !record_above_me ) //null if no record above
{ _a = 0;_b = 0; }
else
{
_a = record_above_me->_a;
_b = record_above_me->_b;
}
switch ( _dir & 1 )
{
case GO_LEFT : if ( LNK->Group() == GROUP_A )
{
LNK->SetRightA( ( bool )( _a > 0 ) );
if ( _GC->GetWindingRule() )
LNK->GetInc() ? _a++ : _a--;
else
{ //ALTERNATE
if ( _a )
_a = 0;
else
_a = 1;
}
LNK->SetLeftA( ( bool )( _a > 0 ) );
LNK->SetLeftB( ( bool )( _b > 0 ) );
LNK->SetRightB( ( bool )( _b > 0 ) );
}
else
{
LNK->SetRightA( ( bool )( _a > 0 ) );
LNK->SetLeftA( ( bool )( _a > 0 ) );
LNK->SetRightB( ( bool )( _b > 0 ) );
if ( _GC->GetWindingRule() )
LNK->GetInc() ? _b++ : _b--;
else //ALTERNATE
{
if ( _b )
_b = 0;
else
_b = 1;
}
LNK->SetLeftB( ( bool )( _b > 0 ) );
}
break;
case GO_RIGHT : if ( LNK->Group() == GROUP_A )
{
LNK->SetLeftA( ( bool )( _a > 0 ) );
if ( _GC->GetWindingRule() )
LNK->GetInc() ? _a++ : _a--;
else
{ //ALTERNATE
if ( _a )
_a = 0;
else
_a = 1;
}
LNK->SetRightA( ( bool )( _a > 0 ) );
LNK->SetLeftB( ( bool )( _b > 0 ) );
LNK->SetRightB( ( bool )( _b > 0 ) );
}
else
{
LNK->SetRightA( ( bool )( _a > 0 ) );
LNK->SetLeftA( ( bool )( _a > 0 ) );
LNK->SetLeftB( ( bool )( _b > 0 ) );
if ( _GC->GetWindingRule() )
LNK->GetInc() ? _b++ : _b--;
else
{ //ALTERNATE
if ( _b )
_b = 0;
else
_b = 1;
}
LNK->SetRightB( ( bool )( _b > 0 ) );
}
break;
default : _GC->error( "Undefined Direction of link", "function IScanBeam::Calc_Set_Left_Right()" );
break;
}
//THE NEXT WILL WORK for MOST windingrule polygons,
//even when not taking into acount windingrule
// not all
/*
switch (_dir&1)
{
case GO_LEFT : if (LNK->Group() == GROUP_A)
{
LNK->SetRightA((bool)(_a>0));
if (booleng->Get_WindingRule())
LNK->GetInc() ? _a++ : _a--;
else
_a--;
LNK->SetLeftA((bool)(_a>0));
LNK->SetLeftB((bool)(_b>0));
LNK->SetRightB((bool)(_b>0));
}
else
{
LNK->SetRightA((bool)(_a > 0));
LNK->SetLeftA((bool)(_a>0));
LNK->SetRightB((bool)(_b>0));
if (booleng->Get_WindingRule())
LNK->GetInc() ? _b++ : _b--;
else
_b--;
LNK->SetLeftB((bool)(_b>0));
}
break;
case GO_RIGHT : if (LNK->Group() == GROUP_A)
{
LNK->SetLeftA((bool)(_a>0));
if (booleng->Get_WindingRule())
LNK->GetInc() ? _a++ : _a--;
else
_a++;
LNK->SetRightA((bool)(_a>0));
LNK->SetLeftB((bool)(_b>0));
LNK->SetRightB((bool)(_b>0));
}
else
{
LNK->SetRightA((bool)(_a>0));
LNK->SetLeftA((bool)(_a>0));
LNK->SetLeftB((bool)(_b>0));
if (booleng->Get_WindingRule())
LNK->GetInc() ? _b++ : _b--;
else
_b++;
LNK->SetRightB((bool)(_b>0));
}
break;
default : _messagehandler->error("Undefined Direction of link","function IScanBeam::Calc_Set_Left_Right()");
break;
}
*/
//if the records are parallel (same begin/endnodes)
//the above link a/b flag are adjusted to the current a/b depth
if ( record_above_me && Equal( record_above_me ) )
{
par = true;
LNK->Mark();
record_above_me->_a = _a;
record_above_me->_b = _b;
if ( Direction() == GO_LEFT )
{
//set the bottom side of the above link
if ( record_above_me->Direction() == GO_LEFT )
{
record_above_me->LNK->SetLeftA( LNK->GetLeftA() );
record_above_me->LNK->SetLeftB( LNK->GetLeftB() );
}
else
{
record_above_me->LNK->SetRightA( LNK->GetLeftA() );
record_above_me->LNK->SetRightB( LNK->GetLeftB() );
}
}
else
{
//set the bottom side of the above link
if ( record_above_me->Direction() == GO_LEFT )
{
record_above_me->LNK->SetLeftA( LNK->GetRightA() );
record_above_me->LNK->SetLeftB( LNK->GetRightB() );
}
else
{
record_above_me->LNK->SetRightA( LNK->GetRightA() );
record_above_me->LNK->SetRightB( LNK->GetRightB() );
}
}
}
return par;
}
bool kbRecord::Equal( kbRecord *a )
{
return( ( bool )( ( LNK->GetOther( a->LNK->GetBeginNode() ) == a->LNK->GetEndNode() ) &&
( LNK->GetOther( a->LNK->GetEndNode() ) == a->LNK->GetBeginNode() ) ) );
}
kbLine* kbRecord::GetLine()
{
return & _line;
}
/*! \file src/scanbeam.cpp
\author Klaas Holwerda or Julian Smart
Copyright: 2001-2004 (C) Klaas Holwerda
Licence: see kboollicense.txt
RCS-ID: $Id: scanbeam.cpp,v 1.7 2009/09/14 16:50:12 titato Exp $
*/
// class scanbeam
// this class represents de space between two scanlines
#include "kbool/scanbeam.h"
#include <math.h>
#include <assert.h>
#include "kbool/booleng.h"
#include "kbool/graph.h"
#include "kbool/node.h"
//this here is to initialize the static iterator of scanbeam
//with NOLIST constructor
int recordsorter( kbRecord* , kbRecord* );
int recordsorter_ysp_angle( kbRecord* , kbRecord* );
int recordsorter_ysp_angle_back( kbRecord* rec1, kbRecord* rec2 );
ScanBeam::ScanBeam( Bool_Engine* GC ): DL_List<kbRecord*>()
{
_GC = GC;
_type = NORMAL;
_BI.Attach( this );
}
ScanBeam::~ScanBeam()
{
//first delete all record still in the beam
_BI.Detach();
remove_all( true );
//DeleteRecordPool();
}
void ScanBeam::SetType( kbNode* low, kbNode* high )
{
if ( low->GetX() < high->GetX() )
_type = NORMAL;
else
_type = FLAT;
}
/*
//catch node to link crossings
// must be sorted on ysp
int ScanBeam::FindCloseLinksAndCross(TDLI<kbLink>* _I,kbNode* _lowf)
{
int merges = 0;
kbRecord* record;
TDLI<kbRecord> _BBI=TDLI<kbRecord>(this);
if (_BI.count() > 1)
{
//first search a link towards this node
for(_BI.tohead(); !_BI.hitroot(); _BI++)
{
record=_BI.item();
if( (record->GetLink()->GetBeginNode()==_lowf) ||
(record->GetLink()->GetEndNode() ==_lowf)
)
break;
}
//NOTICE if the node "a_node" is not inside a record
//for instance to connected flat links (flatlinks not in beam)
//then IL will be at end (those will be catched at 90 degrees rotation)
if (_BI.hitroot())
{
return(merges);
}
//from IL search back for close links
_BBI.toiter(&_BI);
_BBI--;
while(!_BBI.hitroot())
{
record=_BBI.item();
if (record->Ysp() != _lowf->GetY())
break;
// the distance to the low node is smaller then the MARGE
if( (record->GetLink()->GetBeginNode()!=_lowf) &&
(record->GetLink()->GetEndNode() !=_lowf)
)
{ // the link is not towards the low node
record->GetLink()->AddCrossing(_lowf);
record->SetNewLink(record->GetLink()->ProcessCrossingsSmart(_I));
merges++;
}
_BBI--;
}
//from IL search forward for close links
_BBI.toiter(&_BI);
_BBI++;
while(!_BBI.hitroot())
{
record=_BBI.item();
if (record->Ysp() != _lowf->GetY())
// if (record->Ysp() < _lowf->GetY()-MARGE)
break;
// the distance to the low node is smaller then the MARGE
if( (record->GetLink()->GetBeginNode()!=_lowf) &&
(record->GetLink()->GetEndNode() !=_lowf)
)
{ // the link is not towards the low node
record->GetLink()->AddCrossing(_lowf);
record->SetNewLink(record->GetLink()->ProcessCrossingsSmart(_I));
merges++;
}
_BBI++;
}
}
return merges;
}
*/
/*
bool ScanBeam::Update(TDLI<kbLink>* _I,kbNode* _lowf)
{
bool found=false;
kbLink* link;
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
record->Calc_Ysp(_type,_low);
_BI++;
}
FindCloseLinksAndCross(_I,_lowf);
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
//records containing links towards the new low node
//are links to be marked for removal
if ((record->GetLink()->GetEndNode() == _lowf) ||
(record->GetLink()->GetBeginNode() == _lowf)
)
{
//cross here the links that meat eachother now
delete _BI.item();
_BI.remove();
//cross here the links that meat eachother now
_BI--;
if (!_BI.hitroot() && (_BI.count() > 1))
{
kbRecord* prev=_BI.item();
_BI++;
if (!_BI.hitroot())
{
if (!_BI.item()->Equal(prev)) // records NOT parallel
if (_BI.item()->GetLine()->Intersect(prev->GetLine(),MARGE))
{
//they did cross, integrate the crossings in the graph
//this may modify the links already part of the record
//this is why they are returned in set for the record
_BI.item()->SetNewLink(_BI.item()->GetLink()->ProcessCrossingsSmart(_I));
prev->SetNewLink(prev->GetLink()->ProcessCrossingsSmart(_I));
}
}
}
else
_BI++;
}
else
_BI++;
}
//writebeam();
//ONLY links towards the low node are possible to be added
//the bin flag will be set if it fits in the beam
//so for following beams it will not be checked again
while ( bool(link=_lowf->GetBinHighest(false)) )
{
kbRecord* record=new kbRecord(link);
// yp_new will always be the y of low node since all new links are
// from this node
record->SetYsp(_lowf->GetY());
record->Set_Flags(_type);
//need to calculate ysn to be able to sort this record in the right order
//this is only used when the insert node is equal for both records
// ins_smart and cross neighbour directly
// if empty then just insert
if (empty())
insend(record);
else
{
// put new item left of the one that is bigger
_BI.tohead();
while(!_BI.hitroot())
{
if (recordsorter_ysp_angle(record,_BI.item())==1)
break;
_BI++;
}
_BI.insbefore(record);
_BI--;_BI--; //just before the new record inserted
if (!_BI.hitroot())
{
kbRecord* prev=_BI.item();
_BI++; //goto the new record inserted
if (!_BI.item()->Equal(prev)) // records NOT parallel
{
if (_BI.item()->GetLine()->Intersect(prev->GetLine(),MARGE))
{
//this may modify the links already part of the record
//this is why they are returned in set for the record
_BI.item()->SetNewLink(_BI.item()->GetLink()->ProcessCrossingsSmart(_I));
prev->SetNewLink(prev->GetLink()->ProcessCrossingsSmart(_I));
}
}
}
else
_BI++;
kbRecord* prev=_BI.item(); //the new record
_BI++;
if (!_BI.hitroot() && !_BI.item()->Equal(prev)) // records NOT parallel
{
kbRecord* cur=_BI.item();
if (cur->GetLine()->Intersect(prev->GetLine(),MARGE))
{
//this may modify the links already part of the record
//this is why they are returned in set for the record
cur->SetNewLink(cur->GetLink()->ProcessCrossingsSmart(_I));
prev->SetNewLink(prev->GetLink()->ProcessCrossingsSmart(_I));
}
}
}
//remember this to calculate in/out values for each new link its polygon again.
GNI->insend(record->GetLink()->GetGraphNum());
found=true;
record->GetLink()->SetBeenHere();
}
FindCloseLinksAndCross(_I,_lowf);
//writebeam();
return(found);
}
*/
bool ScanBeam::FindNew( SCANTYPE scantype, TDLI<kbLink>* _I, bool& holes )
{
bool foundnew = false;
_low = _I->item()->GetBeginNode();
kbLink* link;
//if (!checksort())
// SortTheBeam();
lastinserted = 0;
//ONLY links towards the low node are possible to be added
//the bin flag will be set if it fits in the beam
//so for following beams it will not be checked again
while ( ( link = _low->GetBinHighest( false ) ) != NULL )
{
if ( ( link->GetEndNode()->GetX() == link->GetBeginNode()->GetX() ) //flatlink in flatbeam
&& ( ( scantype == NODELINK ) || ( scantype == LINKLINK ) || ( scantype == LINKHOLES ) )
)
{
switch( scantype )
{
case NODELINK:
{
//all vertical links in flatbeam are ignored
//normal link in beam
kbRecord * record = new kbRecord( link, _GC );
// yp_new will always be the y of low node since all new links are
// from this node
record->SetYsp( _low->GetY() );
record->Set_Flags();
// put new item left of the one that is lower in the beam
// The last one inserted in this loop, is already left of the current
// iterator position. So the new links are inerted in proper order.
link->SetRecordNode( _BI.insbefore( record ) );
_BI--;
foundnew = Process_PointToLink_Crossings() != 0 || foundnew;
delete record;
_BI.remove();
break;
}
case LINKLINK:
//is the new record a flat link
{
kbLine flatline = kbLine( link, _GC );
foundnew = Process_LinkToLink_Flat( &flatline ) || foundnew;
//flatlinks are not part of the beams, still they are used to find new beams
//they can be processed now if the beginnode does not change, since this is used to
//to find new beams. and its position does not change
//ProcessCrossings does take care of this
flatline.ProcessCrossings( _I );
break;
}
case LINKHOLES : //holes are never to flatlinks
assert( true );
default:
break;
}
}
else
{
//normal link in beam
kbRecord* record = new kbRecord( link, _GC );
// yp_new will always be the y of low node since all new links are
// from this node
record->SetYsp( _low->GetY() );
record->Set_Flags();
// put new item left of the one that is lower in the beam
// The last one inserted in this loop, is already left of the current
// iterator position. So the new links are inserted in proper order.
link->SetRecordNode( _BI.insbefore( record ) );
lastinserted++;
//_GC->Write_Log( "after insert" );
writebeam();
switch( scantype )
{
case NODELINK:
_BI--;
foundnew = Process_PointToLink_Crossings() != 0 || foundnew;
_BI++;
break;
case INOUT:
{
_BI--;
//now we can set the _inc flag
Generate_INOUT( record->GetLink()->GetGraphNum() );
_BI++;
}
break;
case GENLR:
{
//now we can set the a/b group flags based on the above link
_BI--;
_BI--;
kbRecord* above = 0;
if ( !_BI.hitroot() )
above = _BI.item();
_BI++;
//something to do for winding rule
if ( record->Calc_Left_Right( above ) )
{
delete record;
_BI.remove();
lastinserted--;
}
else
_BI++;
}
break;
case LINKHOLES:
_BI--;
holes = ProcessHoles( true, _I ) || holes;
_BI++;
break;
default:
break;
}
}
link->SetBeenHere();
}
writebeam();
return foundnew;
}
bool ScanBeam::RemoveOld( SCANTYPE scantype, TDLI<kbLink>* _I, bool& holes )
{
bool found = false;
bool foundnew = false;
DL_Iter<kbRecord*> _BBI = DL_Iter<kbRecord*>();
_low = _I->item()->GetBeginNode();
switch( scantype )
{
case INOUT:
case GENLR:
case LINKHOLES:
if ( _type == NORMAL )
{
if ( _low->GetBinHighest( true ) ) //is there something to remove
{
if ( scantype == LINKHOLES )
{
// Tophole links can be linked at the begin or end point, depending on
// which is higher in Y.
// A link pointing to the low node, and which is a tophole link,
// and which was not linked in sofar should be linked now.
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
//records containing links towards the new low node
//are links to be removed
if ( ( record->GetLink()->GetEndNode() == _low ) ||
( record->GetLink()->GetBeginNode() == _low )
)
{
holes = ProcessHoles( false, _I ) || holes;
}
_BI++;
}
}
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
//records containing links towards the new low node
//are links to be removed
if ( ( record->GetLink()->GetEndNode() == _low ) ||
( record->GetLink()->GetBeginNode() == _low )
)
{
delete _BI.item();
_BI.remove();
found = true;
}
else
{
//recalculate ysp for the new scanline
record->Calc_Ysp( _low );
_BI++;
}
}
// all records are renewed in Ysp.
// found links to remove, we search the new insert position for new links.
if ( found )
{
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
if ( record->Ysp() < _low->GetY() )
{
break;
}
_BI++;
}
}
}
else
{
// nothing is removed from the beam, still we moved forward with the scanline
// at the new _low, so we need to recalculate the intersections of the links
// with the new scanline.
// Also the the insert position for new links is determined, being the first
// link below _low.
_BBI.Attach( this );
_BBI.toroot();
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
record->Calc_Ysp( _low );
if ( !found && ( record->Ysp() < _low->GetY() ) )
{
found = true;
_BBI.toiter( &_BI );
}
_BI++;
}
_BI.toiter( &_BBI );
_BBI.Detach();
}
}
else // _type == NORMAL
{ //because the previous beam was flat the links to remove are
//below the last insert position
if ( _low->GetBinHighest( true ) ) //is there something to remove
{
if ( scantype == LINKHOLES )
{
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
//records containing links towards the new low node
//are links to be removed
if ( ( record->GetLink()->GetEndNode() == _low ) ||
( record->GetLink()->GetBeginNode() == _low )
)
{
holes = ProcessHoles( false, _I ) || holes;
}
_BI++;
}
}
//on record back bring us to the last inserted record
//or if nothing was inserted the record before the last deleted record
//if there was no record before the last deleted record this means
//we where at the beginning of the beam, so at root
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
//records containing links towards the new low node
//are links to be removed
if ( ( record->GetLink()->GetEndNode() == _low ) ||
( record->GetLink()->GetBeginNode() == _low )
)
{
delete _BI.item();
_BI.remove();
found = true;
}
else if ( found ) //only once in here
break;
else if ( record->Ysp() < _low->GetY() )
//if flatlinks are not in the beam nothing will be found
//this will bring us to the right insertion point
break;
else
_BI++;
}
}
else
{
//on record back bring us to the last inserted record
//or if nothing was inserted the record before the last deleted record
//if there was no record before the last deleted record this means
//we where at the beginning of the beam, so at root
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
if ( record->Ysp() < _low->GetY() )
break;
_BI++;
}
}
}
break;
case NODELINK:
case LINKLINK:
{
if ( _type == NORMAL )
{
Calc_Ysp();
if ( scantype == LINKLINK )
foundnew = Process_LinkToLink_Crossings() != 0 || foundnew;
else
SortTheBeam( false );
}
//else beam is already sorted because the added/removed flat links
//do not change the ysp of links already there, new non flat links
//are inserted in order, as result the beam stays sorted
if ( _low->GetBinHighest( true ) ) //is there something to remove
{
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
//records containing links towards the new low node
//are links to be removed
if ( ( record->GetLink()->GetEndNode() == _low ) ||
( record->GetLink()->GetBeginNode() == _low )
)
{
kbLine * line = record->GetLine();
if ( scantype == NODELINK )
foundnew = Process_PointToLink_Crossings() != 0 || foundnew;
line->ProcessCrossings( _I );
delete _BI.item();
_BI.remove();
found = true;
}
//because the beam is sorted on ysp, stop when nothing can be there to remove
//and the right insertion point for new links has been found
else if ( ( record->Ysp() < _low->GetY() ) )
break;
else
_BI++;
}
}
else
{
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
//because the beam is sorted on ysp, stop when
//the right insertion point for new links has been found
if ( ( record->Ysp() < _low->GetY() ) )
break;
_BI++;
}
}
}
break;
default:
break;
}
return foundnew;
}
/*
bool ScanBeam::RemoveOld(SCANTYPE scantype,TDLI<kbLink>* _I, bool& holes )
{
bool found = false;
bool foundnew = false;
DL_Iter<kbRecord*> _BBI=DL_Iter<kbRecord*>();
bool attached=false;
_low = _I->item()->GetBeginNode();
switch(scantype)
{
case INOUT:
case GENLR:
case LINKHOLES:
if (_type==NORMAL )
{
kbLink* link = _low->GetBinHighest(true);
if ( link ) //is there something to remove
{
link->SetRecordNode( NULL );
if ( scantype == LINKHOLES )
{
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record = _BI.item();
//records containing links towards the new low node
//are links to be removed
if ((record->GetLink()->GetEndNode() == _low) ||
(record->GetLink()->GetBeginNode() == _low)
)
{
holes = ProcessHoles(false,_I) || holes;
}
_BI++;
}
}
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
//records containing links towards the new low node
//are links to be removed
if ((record->GetLink()->GetEndNode() == _low) ||
(record->GetLink()->GetBeginNode() == _low)
)
{
delete _BI.item();
_BI.remove();
found=true;
}
else if (found) //only once in here
{
attached=true;
found=false;
//recalculate ysp for the new scanline
record->Calc_Ysp(_low);
_BI++;
}
else
{
//recalculate ysp for the new scanline
record->Calc_Ysp(_low);
_BI++;
}
}
}
else
{
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
record->Calc_Ysp(_low);
_BI++;
}
}
}
else
{ //because the previous beam was flat the links to remove are
//below the last insert position
kbLink* link;
link = _low->GetBinHighest(true);
if( link )//is there something to remove
{
link->SetRecordNode( NULL );
bool linkf = false;
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record = _BI.item();
if (record->GetLink() == link)
linkf = true;
_BI++;
}
if ( !linkf )
_BI.tohead();
if ( scantype == LINKHOLES )
{
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
//records containing links towards the new low node
//are links to be removed
if ((record->GetLink()->GetEndNode() == _low) ||
(record->GetLink()->GetBeginNode() == _low)
)
{
holes = ProcessHoles(false,_I) || holes;
}
_BI++;
}
}
//_BI.tonode( link->GetRecordNode() );
//delete _BI.item();
//_BI.remove();
//on record back bring us to the last inserted record
//or if nothing was inserted the record before the last deleted record
//if there was no record before the last deleted record this means
//we where at the beginning of the beam, so at root
//_BI << (lastinserted+1);
//_BI--;
//if (_BI.hitroot()) //only possible when at the begin of the beam
//found=false;
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
//records containing links towards the new low node
//are links to be removed
if ((record->GetLink()->GetEndNode() == _low) ||
(record->GetLink()->GetBeginNode() == _low)
)
{
if ( link != record->GetLink() )
{
break;
}
if ( link->GetRecordNode() != _BI.node() )
{
delete _BI.item();
_BI.remove();
}
else
{
delete _BI.item();
_BI.remove();
}
found=true;
}
else if (found) //only once in here
break;
else if (record->Ysp() < _low->GetY())
//if flatlinks are not in the beam nothing will be found
//this will bring us to the right insertion point
break;
else
_BI++;
}
}
else
{
//on record back bring us to the last inserted record
//or if nothing was inserted the record before the last deleted record
//if there was no record before the last deleted record this means
//we where at the beginning of the beam, so at root
//_BI << (lastinserted+ 1);
//_BI--;
//if (_BI.hitroot()) //only possible when at the begin of the beam
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
if (record->Ysp() < _low->GetY())
break;
_BI++;
}
}
}
break;
case NODELINK:
case LINKLINK:
{
if (_type == NORMAL)
{
Calc_Ysp();
if (scantype==LINKLINK)
foundnew = Process_LinkToLink_Crossings() !=0 || foundnew;
else
SortTheBeam( false );
}
//else beam is already sorted because the added/removed flat links
//do not change the ysp of links already there, new non flat links
//are inserted in order, as result the beam stays sorted
if (_low->GetBinHighest(true)) //is there something to remove
{
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
//records containing links towards the new low node
//are links to be removed
if ((record->GetLink()->GetEndNode() == _low) ||
(record->GetLink()->GetBeginNode() == _low)
)
{
kbLine* line=record->GetLine();
if (scantype==NODELINK)
foundnew = Process_PointToLink_Crossings() !=0 || foundnew;
line->ProcessCrossings(_I);
delete _BI.item();
_BI.remove();
found=true;
}
//because the beam is sorted on ysp, stop when nothing can be there to remove
//and the right insertion point for new links has been found
else if ((record->Ysp() < _low->GetY()))
break;
else
_BI++;
}
}
else
{
_BI.tohead();
while (!_BI.hitroot())
{
kbRecord* record=_BI.item();
//because the beam is sorted on ysp, stop when
//the right insertion point for new links has been found
if ((record->Ysp() < _low->GetY()))
break;
_BI++;
}
}
}
break;
default:
break;
}
return foundnew;
}
*/
void ScanBeam::SortTheBeam( bool backangle )
{
if ( backangle )
_BI.mergesort( recordsorter_ysp_angle_back );
else
_BI.mergesort( recordsorter_ysp_angle );
}
void ScanBeam::Calc_Ysp()
{
_BI.tohead();
while ( !_BI.hitroot() )
{
kbRecord * record = _BI.item();
// kbLink* link=_BI.item()->GetLink();
record->Calc_Ysp( _low );
_BI++;
}
}
// this function will set for all the records which contain a link with the
// corresponding graphnumber the inc flag.
// The inc flag's function is to see in a beam if we go deeper in the graph or not
void ScanBeam::Generate_INOUT( int graphnumber )
{
DIRECTION first_dir = GO_LEFT;
int diepte = 0;
DL_Iter<kbRecord*> _BBI = DL_Iter<kbRecord*>();
_BBI.Attach( this );
for( _BBI.tohead(); !_BBI.hitroot(); _BBI++ )
{
// recalculate _inc again
if ( _BBI.item()->GetLink()->GetGraphNum() == graphnumber )
{ //found a link that belongs to the graph
if ( diepte == 0 )
{ // first link found or at depth zero again
// the direction is important since this is used to find out
// if we go further in or out for coming links
first_dir = _BBI.item()->Direction();
_BBI.item()->GetLink()->SetInc( true );
diepte = 1;
}
else
{ // according to depth=1 links set depth
// verhoog of verlaag diepte
if ( _BBI.item()->Direction() == first_dir )
{
diepte++;
_BBI.item()->GetLink()->SetInc( true );
}
else
{
diepte--;
_BBI.item()->GetLink()->SetInc( false );
}
}
}
if ( _BBI.item() == _BI.item() ) break; //not need to do the rest, will come in a later beam
}
_BBI.Detach();
}
// function ProcessHoles
//
// this function will search the closest link to a hole
// step one, search for a link that is marked (this is a hole)
// step two, the closest link is the previous link in
// the beam, but only in the beam that contains the highest node
// from the marked link.
// why ? : if the marked link has for the begin and end node different
// x,y values, see below as link C
// B
// A +---------+
// +----------+
// ___--+
// ___---
// +--- C
//
// when we at first detect link C we would link it to link A, should work he
// but; we always link a hole at its topleft node, so the highest node
// and then we can't link to A but we should link to B
// so when we found the link, we will look if the node that will come
// in a later beam will be higher than the current, if so we will wait
// till that node comes around otherwise we will link this node to the
// closest link (prev in beam)
bool ScanBeam::ProcessHoles( bool atinsert, TDLI<kbLink>* _LI )
{
// The scanbeam must already be sorted at this moment
kbNode * topnode;
bool foundholes = false;
kbRecord* record = _BI.item();
kbLink* link = record->GetLink();
kbNode* _low = _LI->item()->GetBeginNode();
if( _GC->GetAllowNonTopHoleLinking() )
{
_BI++;
if ( !_BI.hitroot() && _BI.item()->GetLink()->IsTopHole() )
{
kbLink* linkToThis = _BI.item()->GetLink();
//calculate linkToThis its Y at X of topnode.
kbLine line( _GC );
line.Set( linkToThis );
B_INT Y;
kbNode * leftnode; //left node of clossest link
//link right now
if ( linkToThis->GetEndNode()->GetX() == _low->GetX() )
Y = linkToThis->GetEndNode()->GetY();
else if ( linkToThis->GetBeginNode()->GetX() == _low->GetX() )
Y = linkToThis->GetBeginNode()->GetY();
else
Y = line.Calculate_Y( _low->GetX() );
if ( linkToThis->GetBeginNode()->GetX() < linkToThis->GetEndNode()->GetX() )
leftnode = linkToThis->GetBeginNode();
else
leftnode = linkToThis->GetEndNode();
kbNode *topnode = new kbNode( _low->GetX(), Y, _GC );
kbLink *link_A = new kbLink( 0, topnode, leftnode, _GC );
// the orginal linkToThis
linkToThis->Replace( leftnode, topnode );
_LI->insbegin( link_A );
//reset mark to flag that this hole has been processed
linkToThis->SetTopHole( false );
kbLink *link_B = new kbLink( 0, _low, topnode, _GC );
kbLink *link_BB = new kbLink( 0, topnode, _low, _GC );
_LI->insbegin( link_B );
_LI->insbegin( link_BB );
//mark those two segments as hole linking segments
link_B->SetHoleLink( true );
link_BB->SetHoleLink( true );
//is where we come from/link to a hole
bool closest_is_hole = linkToThis->GetHole();
// if the polygon linked to, is a hole, this hole here
// just gets bigger, so we take over the links its hole marking.
link_A->SetHole( closest_is_hole );
link_B->SetHole( closest_is_hole );
link_BB->SetHole( closest_is_hole );
// we have only one operation at the time, taking
// over the operation flags is enough, since the linking segments will
// be part of that output for any operation done.
link_A->TakeOverOperationFlags( linkToThis );
link_B->TakeOverOperationFlags( linkToThis );
link_BB->TakeOverOperationFlags( linkToThis );
foundholes = true;
SortTheBeam( atinsert );
}
_BI--;
}
if ( !record->GetLine()->CrossListEmpty() )
{
SortTheBeam( atinsert );
// link the holes in the graph to a link above.
// a the link where the linecrosslist is not empty, means that
// there are links which refer to this link (must be linked to this link)
// make new nodes and links and set them, re-use the old link, so the links
// that still stand in the linecrosslist will not be lost.
// There is a hole that must be linked to this link !
kbLink* linkToThis = link;
TDLI<kbNode> I( record->GetLine()->GetCrossList() );
I.tohead();
while( !I.hitroot() )
{
topnode = I.item();
I.remove();
//calculate linkToThis its Y at X of topnode.
kbLine line( _GC );
line.Set( linkToThis );
kbNode * leftnode; //left node of clossest link
B_INT Y;
//check if flatlink ( i think is always linkBB from a topnode at same X coordinate.
//but lets accept all flatlinks
if ( linkToThis->GetEndNode()->GetX() == linkToThis->GetBeginNode()->GetX() )
{
//we take the lowest of the flatlink nodes, which is right for
// a second hole at same X
if ( linkToThis->GetEndNode()->GetY() >= linkToThis->GetBeginNode()->GetY() )
{
Y = linkToThis->GetBeginNode()->GetY();
leftnode = linkToThis->GetBeginNode();
}
else
{
Y = linkToThis->GetEndNode()->GetY();
leftnode = linkToThis->GetEndNode();
}
}
else
{
if ( linkToThis->GetEndNode()->GetX() == topnode->GetX() )
Y = linkToThis->GetEndNode()->GetY();
else if ( linkToThis->GetBeginNode()->GetX() == topnode->GetX() )
Y = linkToThis->GetBeginNode()->GetY();
else
Y = line.Calculate_Y( topnode->GetX() );
if ( linkToThis->GetBeginNode()->GetX() < linkToThis->GetEndNode()->GetX() )
leftnode = linkToThis->GetBeginNode();
else
leftnode = linkToThis->GetEndNode();
}
// Now we'll create new nodes and new links to make the link between
// the graphs.
//holes are always linked in a non hole or hole
//for a non hole this link will be to the right
//because non holes are right around
//for holes this will be to the right also,
//because they are left around but the link is always on the
//bottom of the hole
// linkA linkToThis
// o-------->--------NodeA------->------------o
// leftnode | |
// | |
// linkB v ^ linkBB
// | |
// | |
// outgoing* | | incoming*
// o------<---------topnode--------<----------o
//
// all holes are oriented left around
kbNode *node_A = new kbNode( topnode->GetX(), Y, _GC );
kbLink *link_A = new kbLink( 0, leftnode, node_A, _GC );
kbLink *link_B = new kbLink( 0, node_A, topnode, _GC );
kbLink *link_BB = new kbLink( 0, topnode, node_A, _GC );
// the orginal linkToThis
linkToThis->Replace( leftnode, node_A );
_LI->insbegin( link_A );
_LI->insbegin( link_B );
_LI->insbegin( link_BB );
//mark those two segments as hole linking segments
link_B->SetHoleLink( true );
link_BB->SetHoleLink( true );
//is where we come from/link to a hole
bool closest_is_hole = linkToThis->GetHole();
// if the polygon linked to, is a hole, this hole here
// just gets bigger, so we take over the links its hole marking.
link_A->SetHole( closest_is_hole );
link_B->SetHole( closest_is_hole );
link_BB->SetHole( closest_is_hole );
// we have only one operation at the time, taking
// over the operation flags is enough, since the linking segments will
// be part of that output for any operation done.
link_A->TakeOverOperationFlags( linkToThis );
link_B->TakeOverOperationFlags( linkToThis );
link_BB->TakeOverOperationFlags( linkToThis );
// check next top node is at same X
if ( !I.hitroot() )
{
kbNode *newtopnode = I.item();
if ( topnode->GetX() == newtopnode->GetX() )
linkToThis = link_BB;
else
linkToThis = link;
}
}
}
if ( link->IsTopHole() )
{
SortTheBeam( atinsert );
writebeam();
}
if ( link->IsTopHole() && !_BI.athead() )
{
// now we check if this hole should now be linked, or later
// we always link on the node with the maximum y value, Why ? because i like it !
// to link we put the node of the hole into the crosslist of the closest link !
assert( record->Direction() == GO_LEFT );
// he goes to the left
if ( atinsert )
{
if ( link->GetBeginNode()->GetY() <= link->GetEndNode()->GetY() )
{
topnode = link->GetEndNode();
//the previous link in the scanbeam == the closest link to the hole in vertical
//direction PUT this node into this link
_BI--;
_BI.item()->GetLine()->AddCrossing( topnode );
_BI++;
//reset tophole flag, hole has been processed
link->SetTopHole( false );
foundholes = true;
}
}
else //remove stage of links from te beam
{
//the tophole link was NOT linked at the insert stage, so it most be linked now
topnode = _BI.item()->GetLink()->GetBeginNode();
//the previous link in the scanbeam == the closest link to the hole in vertical
//direction PUT this node into this link
_BI--;
_BI.item()->GetLine()->AddCrossing( topnode );
_BI++;
//reset mark to flag that this hole has been processed
link->SetTopHole( false );
foundholes = true;
}
}
return foundholes;
}
//sort the records on Ysp if eqaul, sort on tangent at ysp
int recordsorter_ysp_angle( kbRecord* rec1, kbRecord* rec2 )
{
if ( rec1->Ysp() > rec2->Ysp() )
return( 1 );
if ( rec1->Ysp() < rec2->Ysp() )
return( -1 );
//it seems they are equal
B_INT rightY1;
if ( rec1->Direction() == GO_LEFT )
rightY1 = rec1->GetLink()->GetBeginNode()->GetY();
else
rightY1 = rec1->GetLink()->GetEndNode()->GetY();
B_INT rightY2;
if ( rec2->Direction() == GO_LEFT )
rightY2 = rec2->GetLink()->GetBeginNode()->GetY();
else
rightY2 = rec2->GetLink()->GetEndNode()->GetY();
if ( rightY1 > rightY2 )
return( 1 );
if ( rightY1 < rightY2 )
return( -1 );
return( 0 );
}
//sort the records on Ysp if eqaul, sort on tangent at ysp
int recordsorter_ysp_angle_back( kbRecord* rec1, kbRecord* rec2 )
{
if ( rec1->Ysp() > rec2->Ysp() )
return( 1 );
if ( rec1->Ysp() < rec2->Ysp() )
return( -1 );
//it seems they are equal
B_INT leftY1;
if ( rec1->Direction() == GO_RIGHT )
leftY1 = rec1->GetLink()->GetBeginNode()->GetY();
else
leftY1 = rec1->GetLink()->GetEndNode()->GetY();
B_INT leftY2;
if ( rec2->Direction() == GO_RIGHT )
leftY2 = rec2->GetLink()->GetBeginNode()->GetY();
else
leftY2 = rec2->GetLink()->GetEndNode()->GetY();
if ( leftY1 > leftY2 )
return( 1 );
if ( leftY1 < leftY2 )
return( -1 );
return( 0 );
}
// swap functie for cocktailsort ==> each swap means an intersection of links
bool swap_crossing_normal( kbRecord *a, kbRecord *b )
{
if ( !a->Equal( b ) ) // records NOT parallel
{
a->GetLine()->Intersect_simple( b->GetLine() );
return true;
}
return false;
}
int ScanBeam::Process_LinkToLink_Crossings()
{
// sort on y value of next intersection; and find the intersections
return _BI.cocktailsort( recordsorter_ysp_angle_back, swap_crossing_normal );
}
//catch node to link crossings
// must be sorted on ysp
int ScanBeam::Process_PointToLink_Crossings()
{
int merges = 0;
kbRecord* record;
if ( _BI.count() > 1 )
{
DL_Iter<kbRecord*> IL = DL_Iter<kbRecord*>( this );
IL.toiter( &_BI );
//from IL search back for close links
IL--;
while( !IL.hitroot() )
{
record = IL.item();
if ( record->Ysp() > _low->GetY() + _GC->GetInternalMarge() )
break;
// the distance to the lo/hi node is smaller then the _GC->GetInternalMarge()
if( ( record->GetLink()->GetBeginNode() != _low ) &&
( record->GetLink()->GetEndNode() != _low )
)
{ // the link is not towards the lohi node
record->GetLine()->AddCrossing( _low );
merges++;
}
IL--;
}
//from IL search forward for close links
IL.toiter( &_BI );
IL++;
while( !IL.hitroot() )
{
record = IL.item();
if ( record->Ysp() < _low->GetY() - _GC->GetInternalMarge() )
break;
// the distance to the lohi node is smaller then the booleng->Get_Marge()
if( ( record->GetLink()->GetBeginNode() != _low ) &&
( record->GetLink()->GetEndNode() != _low )
)
{ // the link is not towards the low node
record->GetLine()->AddCrossing( _low );
merges++;
}
IL++;
}
}
return merges;
}
int ScanBeam::Process_LinkToLink_Flat( kbLine* flatline )
{
int crossfound = 0;
kbRecord* record;
DL_Iter<kbRecord*> _BBI = DL_Iter<kbRecord*>();
_BBI.Attach( this );
_BBI.toiter( &_BI );
for( _BI.tohead(); !_BI.hitroot(); _BI++ )
{
record = _BI.item();
if ( record->Ysp() < ( flatline->GetLink()->GetLowNode()->GetY() - _GC->GetInternalMarge() ) )
break;//they are sorted so no other can be there
if ( ( record->Ysp() > ( flatline->GetLink()->GetLowNode()->GetY() - _GC->GetInternalMarge() ) )
&&
( record->Ysp() < ( flatline->GetLink()->GetHighNode()->GetY() + _GC->GetInternalMarge() ) )
)
{ //it is in between the flat link region
//create a new node at ysp and insert it in both the flatlink and the crossing link
if (
( record->GetLink()->GetEndNode() != flatline->GetLink()->GetHighNode() ) &&
( record->GetLink()->GetEndNode() != flatline->GetLink()->GetLowNode() ) &&
( record->GetLink()->GetBeginNode() != flatline->GetLink()->GetHighNode() ) &&
( record->GetLink()->GetBeginNode() != flatline->GetLink()->GetLowNode() )
)
{
kbNode * newnode = new kbNode( _low->GetX(), _BI.item()->Ysp(), _GC );
flatline->AddCrossing( newnode );
record->GetLine()->AddCrossing( newnode );
crossfound++;
}
}
}
_BI.toiter( &_BBI );
_BBI.Detach();
return crossfound;
}
bool ScanBeam::checksort()
{
// if empty then just insert
if ( empty() )
return true;
// put new item left of the one that is bigger
_BI.tohead();
kbRecord* prev = _BI.item();
_BI++;
while( !_BI.hitroot() )
{
kbRecord * curr = _BI.item();
if ( recordsorter_ysp_angle( prev, curr ) == -1 )
{
recordsorter_ysp_angle( prev, curr );
return false;
}
prev = _BI.item();
_BI++;
}
return true;
}
bool ScanBeam::writebeam()
{
#if KBOOL_DEBUG == 1
FILE * file = _GC->GetLogFile();
if ( file == NULL )
return true;
fprintf( file, "# beam %d \n", count() );
fprintf( file, " low %I64d %I64d \n", _low->GetX() , _low->GetY() );
fprintf( file, " type %d \n", _type );
if ( empty() )
{
fprintf( file, " empty \n" );
return true;
}
DL_Iter<kbRecord*> _BI( this );
// put new item left of the one that is bigger
_BI.tohead();
while( !_BI.hitroot() )
{
kbRecord * cur = _BI.item();
fprintf( file, " ysp %I64d \n", cur->Ysp() );
kbLink* curl = cur->GetLink();
fprintf( file, " linkbegin %I64d %I64d \n", curl->GetBeginNode()->GetX(), curl->GetBeginNode()->GetY() );
fprintf( file, " linkend %I64d %I64d \n", curl->GetEndNode()->GetX(), curl->GetEndNode()->GetY() );
if ( curl->GetEndNode()->GetX() == -2459565876494606883 )
fprintf( file, " linkend %I64d %I64d \n", curl->GetEndNode()->GetX(), curl->GetEndNode()->GetY() );
_BI++;
}
#endif
return true;
}
...@@ -88,10 +88,10 @@ bool TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist ) ...@@ -88,10 +88,10 @@ bool TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist )
bool FindSegmentIntersections( int xi, int yi, int xf, int yf, bool FindSegmentIntersections( int xi, int yi, int xf, int yf,
int xi2, int yi2, int xf2, int yf2 ) int xi2, int yi2, int xf2, int yf2 )
{ {
if( max( xi, xf ) < min( xi2, xf2 ) if( std::max( xi, xf ) < std::min( xi2, xf2 )
|| min( xi, xf ) > max( xi2, xf2 ) || std::min( xi, xf ) > std::max( xi2, xf2 )
|| max( yi, yf ) < min( yi2, yf2 ) || std::max( yi, yf ) < std::min( yi2, yf2 )
|| min( yi, yf ) > max( yi2, yf2 ) ) || std::min( yi, yf ) > std::max( yi2, yf2 ) )
return false; return false;
return TestForIntersectionOfStraightLineSegments( xi, yi, xf, yf, return TestForIntersectionOfStraightLineSegments( xi, yi, xf, yf,
...@@ -135,7 +135,7 @@ bool FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, in ...@@ -135,7 +135,7 @@ bool FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, in
else else
{ {
if( dist ) if( dist )
*dist = min( abs( a - xi ), abs( a - xf ) ); *dist = std::min( abs( a - xi ), abs( a - xf ) );
return false; return false;
} }
...@@ -450,16 +450,16 @@ int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int w1, ...@@ -450,16 +450,16 @@ int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int w1,
// check clearance between bounding rectangles // check clearance between bounding rectangles
int min_dist = max_cl + ( (w1 + w2) / 2 ); int min_dist = max_cl + ( (w1 + w2) / 2 );
if( min( x1i, x1f ) - max( x2i, x2f ) > min_dist ) if( std::min( x1i, x1f ) - std::max( x2i, x2f ) > min_dist )
return max_cl+1; return max_cl+1;
if( min( x2i, x2f ) - max( x1i, x1f ) > min_dist ) if( std::min( x2i, x2f ) - std::max( x1i, x1f ) > min_dist )
return max_cl+1; return max_cl+1;
if( min( y1i, y1f ) - max( y2i, y2f ) > min_dist ) if( std::min( y1i, y1f ) - std::max( y2i, y2f ) > min_dist )
return max_cl+1; return max_cl+1;
if( min( y2i, y2f ) - max( y1i, y1f ) > min_dist ) if( std::min( y2i, y2f ) - std::max( y1i, y1f ) > min_dist )
return max_cl+1; return max_cl+1;
int xx, yy; int xx, yy;
...@@ -535,7 +535,7 @@ double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int ...@@ -535,7 +535,7 @@ double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int
if( InRange( y, yi, yf ) ) if( InRange( y, yi, yf ) )
return abs( x - xi ); return abs( x - xi );
else else
return min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) ); return std::min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) );
} }
else if( yf==yi ) else if( yf==yi )
{ {
...@@ -543,7 +543,7 @@ double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int ...@@ -543,7 +543,7 @@ double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int
if( InRange( x, xi, xf ) ) if( InRange( x, xi, xf ) )
return abs( y - yi ); return abs( y - yi );
else else
return min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) ); return std::min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) );
} }
else else
{ {
...@@ -564,7 +564,7 @@ double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int ...@@ -564,7 +564,7 @@ double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int
if( InRange( xp, xi, xf ) && InRange( yp, yi, yf ) ) if( InRange( xp, xi, xf ) && InRange( yp, yi, yf ) )
return Distance( x, y, xp, yp ); return Distance( x, y, xp, yp );
else else
return min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) ); return std::min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) );
} }
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment