package com.elphel.imagej.common; /** * The code below is extracted form ImageJ plugin GaussianBlur.java, stripped of ImageProcessor and used (double) instead of (float) arrays. * The following are notes from the original file: * * * This plug-in filter uses convolution with a Gaussian function for smoothing. * 'Radius' means the radius of decay to exp(-0.5) ~ 61%, i.e. the standard * deviation sigma of the Gaussian (this is the same as in Photoshop, but * different from the previous ImageJ function 'Gaussian Blur', where a value * 2.5 times as much has to be entered. * - Like all convolution operations in ImageJ, it assumes that out-of-image * pixels have a value equal to the nearest edge pixel. This gives higher * weight to edge pixels than pixels inside the image, and higher weight * to corner pixels than non-corner pixels at the edge. Thus, when smoothing * with very high blur radius, the output will be dominated by the edge * pixels and especially the corner pixels (in the extreme case, with * a blur radius of e.g. 1e20, the image will be raplaced by the average * of the four corner pixels). * - For increased speed, except for small blur radii, the lines (rows or * columns of the image) are downscaled before convolution and upscaled * to their original length thereafter. * * Version 03-Jun-2007 M. Schmid with preview, progressBar stack-aware, * snapshot via snapshot flag; restricted range for resetOutOfRoi * */ public class DoubleGaussianBlur { /* the standard deviation of the Gaussian*/ // private static double sigma = 2.0; /* whether sigma is given in units corresponding to the pixel scale (not pixels)*/ // private static boolean sigmaScaled = false; /* The flags specifying the capabilities and needs */ // private int flags = DOES_ALL|SUPPORTS_MASKING|PARALLELIZE_STACKS|KEEP_PREVIEW; // private ImagePlus imp; // The ImagePlus of the setup call, needed to get the spatial calibration // private boolean hasScale = false; // whether the image has an x&y scale private int nPasses = 1; // The number of passes (filter directions * color channels * stack slices) // private int nChannels = 1; // The number of color channels private int pass; // Current pass /* Default constructor */ public DoubleGaussianBlur() { } public double [] blurWithNaN( double[] pixels, double [] in_weight, // or null int width, int height, double sigmaX, double sigmaY, double accuracy ) { double [] weight; double [] blured = new double[pixels.length]; if (in_weight == null) { weight = new double [pixels.length]; for (int i = 0; i < weight.length; i++) { weight[i] = 1.0; } } else { weight = in_weight.clone(); } for (int i = 0; i < pixels.length; i++) { if (Double.isNaN(pixels[i])) { weight[i] = 0.0; } else { blured[i] = pixels[i] * weight[i]; } } blurDouble( blured, width, height, sigmaX, sigmaY, accuracy); blurDouble( weight, width, height, sigmaX, sigmaY, accuracy); for (int i = 0; i < pixels.length; i++) { blured[i] /= weight[i]; } return blured; } public void blurDouble( double[] pixels, int width, int height, double sigmaX, double sigmaY, double accuracy) { if (sigmaX > 0) blur1Direction(pixels, width,height, sigmaX, accuracy, true); if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview? if (sigmaY > 0) blur1Direction(pixels, width,height, sigmaY, accuracy, false); return; } /* Blur an image in one direction (x or y) by a Gaussian. * @param ip The Image with the original data where also the result will be stored * @param sigma Standard deviation of the Gaussian * @param accuracy Accuracy of kernel, should not be > 0.02 * @param xDirection True for blurring in x direction, false for y direction * @param extraLines Number of lines (parallel to the blurring direction) * below and above the roi bounds that should be processed. */ // TODO: Make threaded! public void blur1Direction(double [] pixels, int width, int height, double sigma, double accuracy, boolean xDirection // int extraLines ) { final int UPSCALE_K_RADIUS = 2; //number of pixels to add for upscaling final double MIN_DOWNSCALED_SIGMA = 4.; //minimum standard deviation in the downscaled image // float[] pixels = (float[])ip.getPixels(); // int width = ip.getWidth(); // int height = ip.getHeight(); // Rectangle roi = ip.getRoi(); int length = xDirection ? width : height; //number of points per line (line can be a row or column) int pointInc = xDirection ? 1 : width; //increment of the pixels array index to the next point in a line int lineInc = xDirection ? width : 1; //increment of the pixels array index to the next line // int lineFrom = (xDirection ? roi.y : roi.x) - extraLines; //the first line to process // if (lineFrom < 0) lineFrom = 0; int lineFrom = 0; //the first line to process // int lineTo = (xDirection ? roi.y+roi.height : roi.x+roi.width) + extraLines; //the last line+1 to process // if (lineTo > (xDirection ? height:width)) lineTo = (xDirection ? height:width); int lineTo = (xDirection ? height:width); // int writeFrom = xDirection? roi.x : roi.y; //first point of a line that needs to be written // int writeTo = xDirection ? roi.x+roi.width : roi.y+roi.height; int writeFrom = 0; //first point of a line that needs to be written int writeTo = xDirection ? width : height; // int inc = Math.max((lineTo-lineFrom)/(100/(nPasses>0?nPasses:1)+1),20); pass++; if (pass>nPasses) pass =1; // Thread thread = Thread.currentThread(); // needed to check for interrupted state if (sigma > 2*MIN_DOWNSCALED_SIGMA + 0.5) { /* large radius (sigma): scale down, then convolve, then scale up */ int reduceBy = (int)Math.floor(sigma/MIN_DOWNSCALED_SIGMA); //downscale by this factor if (reduceBy > length) reduceBy = length; /* Downscale gives std deviation sigma = 1/sqrt(3); upscale gives sigma = 1/2. (in downscaled pixels) */ /* All sigma^2 values add to full sigma^2 */ double sigmaGauss = Math.sqrt(sigma*sigma/(reduceBy*reduceBy) - 1./3. - 1./4.); int maxLength = (length+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1); //downscaled line can't be longer double[][] gaussKernel = makeGaussianKernel(sigmaGauss, accuracy, maxLength); int kRadius = gaussKernel[0].length*reduceBy; //Gaussian kernel radius after upscaling int readFrom = (writeFrom-kRadius < 0) ? 0 : writeFrom-kRadius; //not including broadening by downscale&upscale int readTo = (writeTo+kRadius > length) ? length : writeTo+kRadius; int newLength = (readTo-readFrom+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1); int unscaled0 = readFrom - (UPSCALE_K_RADIUS + 1)*reduceBy; //input point corresponding to cache index 0 //IJ.log("reduce="+reduceBy+", newLength="+newLength+", unscaled0="+unscaled0+", sigmaG="+(float)sigmaGauss+", kRadius="+gaussKernel[0].length); double[] downscaleKernel = makeDownscaleKernel(reduceBy); double[] upscaleKernel = makeUpscaleKernel(reduceBy); double[] cache1 = new double[newLength]; //holds data after downscaling double[] cache2 = new double[newLength]; //holds data after convolution int pixel0 = lineFrom*lineInc; for (int line=lineFrom; line length) ? length : writeTo+kRadius; int pixel0 = lineFrom*lineInc; for (int line=lineFrom; line n, including non-calculated values in case the kernel * size is limited by maxRadius. */ public double[][] makeGaussianKernel(double sigma, double accuracy, int maxRadius) { int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1; if (maxRadius < 50) maxRadius = 50; // too small maxRadius would result in inaccurate sum. if (kRadius > maxRadius) kRadius = maxRadius; double[][] kernel = new double[2][kRadius]; for (int i=0; i 3) { // edge correction double sqrtSlope = Double.MAX_VALUE; int r = kRadius; while (r > kRadius/2) { r--; double a = Math.sqrt(kernel[0][r])/(kRadius-r); if (a < sqrtSlope) sqrtSlope = a; else break; } for (int r1 = r+2; r1 < kRadius; r1++) kernel[0][r1] = (kRadius-r1)*(kRadius-r1)*sqrtSlope*sqrtSlope; } double sum; // sum over all kernel elements for normalization if (kRadius < maxRadius) { sum = kernel[0][0]; for (int i=1; iwriteFrom-kernel.length or 0. * @param readTo Last array element+1 of the line that must be read. * writeTo+kernel.length or input.length * @param writeFrom Index of the first point in the line that should be written * @param writeTo Index+1 of the last point in the line that should be written * @param point0 Array index of first element of the 'line' in pixels (i.e., lineNumber * lineInc) * @param pointInc Increment of the pixels array index to the next point (for an ImageProcessor, * it should be 1 for a row, width for a column) */ public void convolveLine(double[] input, double[] pixels, double[][] kernel, int readFrom, int readTo, int writeFrom, int writeTo, int point0, int pointInc) { int length = input.length; double first = input[0]; //out-of-edge pixels are replaced by nearest edge pixels double last = input[length-1]; double[] kern = kernel[0]; //the kernel itself double kern0 = kern[0]; double[] kernSum = kernel[1]; //the running sum over the kernel int kRadius = kern.length; int firstPart = kRadius < length ? kRadius : length; int p = point0 + writeFrom*pointInc; int i = writeFrom; for (; ilength) result += kernSum[length-i-1]*last; for (int k=1; k= 0) v += input[i-k]; if (i+k= length double result = input[i]*kern0; if (i=length) result += kernSum[length-i-1]*last; for (int k=1; k= 0) v += input[i-k]; if (i+k