
Lossless Single Pass Image Compression by Interpolation

Dr. Andrey Filippov Nathaniel Callens Jr.
Kelly Chang Bryce Hepner

Nikolay (Last Name)
Elphel, Inc.

1455 W. 2200 S. #205, Salt Lake City, Utah 84119 USA
{andrey,bryce}@elphel.com

July 13, 2022

Abstract

This method operates by scanning through each pixel
in a raster pattern, using already scanned pixels to de-
compress the next pixel’s value. By saving the error
between the predicted pixel value and the actual value,
we were able to losslessly compress thermal images to be
less than 41% of their original size. The resulting files
were approximately 34% smaller than their equivalent
PNGs, and 35% smaller than TIFF files compressed
with LZW.

1. Introduction

1.1 Overview

The idea is based on how images are scanned in orig-
inally. Like a cathode-ray tube in a television, the al-
gorithm goes line by line, reading/writing each pixel
individually in a raster pattern.

Each pixel, as long as it is not on the top or side
boundaries, will have 4 neighbors that have already
been read into the machine. Those points can be an-
alyzed and interpolated to find the next pixel’s value.
The goal is to encode the error between that value and
the original value, save that, and use that to compress
and decompress the image. Even though a possibly
larger integer may need to be stored, it is more likely
that the guess will be correct or off by a small margin,
making the distribution better for compression.

The approach of using the neighboring pixels for
compression is not new, as evidenced by its use in
ISO/IEC14495-1:1999 [9] and “CALIC-a context based
adaptive lossless image codec”[12], which were both
written more than 20 years before the publication of
this paper. Our final implementation differs from these
methods, and others, in ways that we found beneficial,
and in ways others may find to be beneficial as well.

Figure 1: The other 4 pixels are used to find the value of
the 5th.

1.2 Background

The images that were used in the development of
this paper were all thermal images, with values rang-
ing from 19,197 to 25,935. In the system, total pos-
sible values can range from 0 to 32,768. Most images
had ranges of at most 4,096 between the smallest and
the largest pixel values. The camera being used has
16 forward-facing thermal sensors creating 16 similar
thermal images every frame. Everything detailed here
can still apply to standard grayscale or RGB images,
but only 16-bit thermal images were used in testing.

2. Related Work

2.1 PNG

PNG is a lossless compression algorithm that also
operates using a single pass system[10]. The image is
separated into several blocks of arbitrary size, which
are then compressed using a combination of LZ77 and
Huffman encoding [6]. LZ77 operates by finding pat-
terns in the data and creating pointers to the original
instance of that pattern. For example, if there are two
identical blocks of just the color blue, the second one
only has to make reference to the first. Instead of sav-
ing two full blocks, the second one is saved as a pointer
to the first, telling the decoder to use that block. Huff-
man encoding is then used to save these numbers, opti-
mizing how the location data is stored. If one pattern is

1



more frequent, the algorithm should optimize over this,
producing an even smaller file[6]. The Huffman encod-
ing in conjunction with LZ77 helps form “deflate”, the
algorithm summarized here, and the one used in PNG.

Our algorithm uses Huffman encoding similarly, but
a completely different algorithm than LZ77. LZ77
seeks patterns between blocks, while ours has no block
structure and no explicit pattern functionality. Ours
uses the equivalent block size of 1, and instead of en-
coding the data, it encodes alternate data which is used
to compress.

2.2 LZW

LZW operates differently by creating a separate
code table that maps every sequence to a code. Al-
though this is used for an image, the original pa-
per by Welch [11] explains it through text examples,
which will be done here as well. Instead of looking at
each character individually, it looks at variable-length
string chains and compresses those. Passing through
the items to be compressed, if a phrase has already
been encountered, it saves the reference to the original
phrase along with the next character in the sequence.
In this way, the longer repeated phrases are automati-
cally found and can be compressed to be smaller. This
system also uses blocks like PNG in order to save pat-
terns in the data, but instead by looking at the whole
data set as it moves along, PNG only operates on a
short portion of the text [6].

Ours, similarly to PNG, only looks at a short portion
of the data, which may have an advantage over LZW
for images. Images generally do not have the same pat-
terns that text does, so it may be advantageous not to
use the entire corpus in compressing an image and in-
stead only evaluate it based on nearby objects. The
blue parts of the sky will be next to other blue parts of
the sky, and in the realm of thermal images, tempera-
tures will probably be most similar to nearby ones due
to how heat flows.

2.3 Similar Methods

Our prior searches did not find any very similar ap-
proaches, especially with 16-bit thermal images. There
are many papers however that may have influenced
ours indirectly or are similar to ours and need to be
mentioned for both their similarities and differences.
One paper that is close is “Encoding-interleaved hier-
archical interpolation for lossless image compression”
[1]. This method seems to operate with a similar end
goal, to save the interpolation, but operates using a
different system, including how it interpolates. Instead
of using neighboring pixels in a raster format, it uses
vertical and horizontal ribbons, and a different way of

interpolating. The ribbons alternate, going between a
row that is directly saved and one that is not saved but
is later interpolated. By doing this, it is filling in the
gaps of an already robust image and saving the finer
details. This other method could possibly show an in-
crease in speed but not likely in overall compression.
This will not have the same benefit as ours since ours
uses interpolation on almost the entire image, instead
of just parts, helping it optimize over a larger amount
of data. This paper is also similar to “Iterative poly-
nomial interpolation and data compression” [5], where
the researchers did a similar approach but with differ-
ent shapes. The error numbers were still saved, but
they specifically used polynomial interpretation which
we did not see fit to use in ours.

The closest method is “Near-lossless image compres-
sion by relaxation-labelled prediction” [2], which is sim-
ilar in the general principles of the interpolation and
encoding. The algorithm detailed in the paper uses
a clustering algorithm of the nearby points to create
the interpolation, saving the errors to be used later in
the reconstruction of the original image. This method
is much more complex, not using a direct interpolation
method but instead using a clustering algorithm to find
the next point.

This could potentially have an advantage over what
we did by using more points in the process, but in
proper implementation it may become too complicated
and lose value. The goal for us was to have a simple
and efficient encoding operation, and this would have
too many errors to process. It also has a binning sys-
tem like ours, with theirs based off of the mean square
prediction error. The problem is that which bin it goes
into can shift over the classification process adding to
the complexity of the algorithm.

3. The Approach

To begin, the border values are encoded into the
system, starting with the first value. The values after
that are just modifications from the first value. There
are not many values here and the algorithm needs a
place to start. Alternate things could have been done,
but they would have raised temporal complexity with
marginal gain. Once the middle points are reached, the
pixel to the left, top left, directly above, and top right
have already been read into the system. Each of these
values is given a point in the x-y plane, with the top
left at (-1,1), top pixel at (0,1), top right pixel at (1,1),
and the middle left pixel at (-1,0), giving the target the
coordinates (0,0). Using the formula for a plane in 3D
(ax + by + c = z) we get the system of equations

−a + b + c = z0

2



b + c = z1

a + b + c = z2

−a + c = z3

Which complete the form Ax = b as

A =


−1 1 1
0 1 1
1 1 1
−1 0 1



b =


z0
z1
z2
z3


Due to there being 4 equations and 4 unknowns, this

is unsolvable.
This can be corrected by making

A =

3 0 −1
0 3 3
1 −3 −4


and

b =

 −z0 + z2 − z3
z0 + z1 + z2

−z0 − z1 − z2 − z3


.

The new matrix is full rank and can therefore be
solved using numpy.linalg.solve [7]. The x that re-
sults corresponds to two values followed by the original
c from the ax+ by+ c = z form, which is the predicted
pixel value.

Huffman encoding performs well on data with vary-
ing frequency [8], making it a good candidate for saving
the error numbers. Most pixels will be off the predicted
values by low numbers since many objects have close to
uniform surface temperature or have an almost uniform
temperature gradient.

In order to adjust for objects in images that are
known to have an unpredictable temperature (fail the
cases before), a bin system is used. The residuals from
numpy.linalg.lstsq [7] are used to determine the dif-
ference across the 4 known points, which the difference
is then used to place it in a category. This number is
the difference between trying to fit a plane between 4
different points. If a plane is able to be drawn that
contains all 4 points, it makes sense that the error will
be much smaller than if the best-fitted plane was not
very close to any of the points. Something more cer-
tain is more likely to be correctly estimated. 5 bins
were used with splits chosen by evenly distributing the
difference numbers into evenly sized bins. Many of the

Figure 2: Encoding the Pixel Values

Figure 3: Encoding the Error Values

images had several different bin sizes ranging from 11
in the first category to a difference of 30 as the size of
the first category. An average number between all of
them was chosen since using the average for bin sizes
versus specific bin sizes had an effect on compression
of less than half a percent.

4. Results

We attained an average compression ratio of 0.4057
on a set of 262 images, with compression ratios on indi-
vidual images ranging from 0.3685 to 0.4979. Because
the system runs off of a saved dictionary, it is better
to think of the system as a cross between an individ-
ual compression system and a larger archival tool. This
means that there are significant changes in compression
ratios depending on how many files are compressed at
a time, despite the ability to decompress files individ-
ually and independently.

3



When the size of the saved dictionary was included,
the compression ratio on the entire set only changed
from 0.4043 to 0.4057. However, when tested on a ran-
dom image in the set, it went from 0.3981 to 0.7508.
This is not a permanent issue, as changes to the method
can be made to fix this. These are outlined in the dis-
cussion section below.

This was tested on a set of a least 16 images, so this
does not affect us as much. When tested on a random
set of 16 images, the ratio only changed from 0.3973 to
0.4193.

Compression Rates
Original LZW PNG Ours
100% 61.94% 61.21% 40.57%

Our method created files that are on average 33.7%
smaller than PNG and 34.5% smaller than LWZ com-
pression on TIFF.

5. Discussion

The files produced through this method are much
smaller than the ones produced by the others, but this
comes at great computational costs in its current im-
plementation. PNG compression was several orders of
magnitude faster on the local machine than the method
that was used in this project. Using a compiled lan-
guage or integrated system instead of python will in-
crease the speed, but there are other improvements
that can be made.

The issue with numpy.linalg.solve was later ad-
dressed to fix the potential slowdown. Calculating the
inverse beforehand and using that in the system had
marginal temporal benefit. numpy.linalg.solve runs
in O(N3) for an N×N matrix, while the multiplication
runs in a similar time. [4] The least squares method
mentioned in this project also has a shortcoming, but
this one cannot be solved as easily. The pseudoinverse
can be calculated beforehand, but the largest problem
is that it is solving the system for every pixel individ-
ually and calculating the norm. numpy.linalg.lstsq

itself runs in O(N3) for an N ×N matrix [3], while the
pseudoinverse, when implemented, uses more python
runtime, adding to temporal complexity.

This compression suffers when it is only used on in-
dividual images, which is not a problem for the use
cases of this project. The test images came from a
camera that has 16 image sensors that work simulta-
neously. The camera works in multiple image incre-
ments and therefore creates large packets that can be
saved together, while still having the functionality of
decompressing individually. This saves greatly on the
memory that is required to view an image. It was there-
fore not seen necessary to create a different system to

compress individual files as individual images are not
created.

A potential workaround for this problem would be to
code extraneous values into the image directly instead
of adding them to the full dictionary. This has the
downside of not being able to integrate perfectly with
Huffman encoding. A leaf of the tree could be a trigger
to switch from Huffman encoding, and instead use an
alternate system to read in the bits. We did not do
this, but it would be a simple change for someone with
a different use case.

References

[1] A. Abrardo, L. Alparone, and F. Bartolini. Encoding-
interleaved hierarchical interpolation for lossless image
compression. Signal Processing, 56(3):321–328, 1997.
2

[2] B. Aiazzi, L. Alparone, and S. Baronti. Near-lossless
image compression by relaxation-labelled prediction.
Signal Processing, 82(11):1619–1631, 2002. 2

[3] J. Alman and V. V. Williams. Algorithm 853: an effi-
cient algorithm for solving rank-deficient least squares
problems. ACM Transactions on Mathematical Soft-
ware, Vol. x, No. x,, 20xx. 4

[4] S. Blackford. LAPACK Benchmark. http://www.

netlib.org/lapack/lug/node71.html, Oct. 1999.
Accessed: 2022-6-23. 4

[5] M. DÆhlen and M. Floater. Iterative polynomial inter-
polation and data compression. Numerical Algorithms,
5(3):165–177, Mar 1993. 2

[6] L. P. Deutsch. DEFLATE Compressed Data For-
mat Specification version 1.3. https://www.w3.org/

Graphics/PNG/RFC-1951, 1996. Accessed: 6/14/2022.
1, 2

[7] C. R. Harris, K. J. Millman, S. J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362,
Sept. 2020. 3

[8] D. A. Huffman. A method for the construction of min-
imum redundancy codes. Proceedings of the Institute
of Radio Engineers, 40(9):1098–1101, Sept. 1952. 3

[9] JPEG. Information technology Lossless and near-
lossless compression of continuous-tone still images.
Standard, International Organization for Standardiza-
tion, Geneva, CH, Dec. 1999. 1

[10] Mark Adler, Thomas Boutell, John Bowler, Christian
Brunschen, Adam M. Costello, Lee Daniel Crocker,
Andreas Dilger, Oliver Fromme, Jean-loup Gailly,
Chris Herborth, Alex Jakulin, Neal Kettler, Tom
Lane, Alexander Lehmann, Chris Lilley, Dave Mar-
tindale, Owen Mortensen, Keith S. Pickens, Robert P.

4

http://www.netlib.org/lapack/lug/node71.html
http://www.netlib.org/lapack/lug/node71.html
https://www.w3.org/Graphics/PNG/RFC-1951
https://www.w3.org/Graphics/PNG/RFC-1951


Poole, Glenn Randers-Pehrson, Greg Roelofs, Willem
van Schaik, Guy Schalnat, Paul Schmidt, Michael
Stokes, Tim Wegner, Jeremy Wohl. Portable Net-
work Graphics (PNG) Specification (Second Edition).
https://www.w3.org/TR/PNG/, Nov. 2003. Accessed:
6/23/2022. 1

[11] Welch. A technique for high-performance data com-
pression. Computer, 17(6):8–19, 1984. 2

[12] X. Wu and N. Memon. Calic-a context based adaptive
lossless image codec. In 1996 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
Conference Proceedings, volume 4, pages 1890–1893
vol. 4, 1996. 1

5

https://www.w3.org/TR/PNG/

	Introduction
	Overview
	Background

	Related Work
	PNG
	LZW
	Similar Methods

	The Approach
	Results
	Discussion

