Lossless Single Pass Image Compression with Efficient Error Handling

for Thermal Images

Andrey Filippov
Kelly Chang

Nathaniel Callens Jr.
Bryce Hepner

Nikolai Masnev

Elphel, Inc.
1455 W. 2200 S. #205, Salt Lake City, Utah 84119 USA

{andrey,bryce}@elphel.com

August 15, 2022

Abstract

The specific properties of thermal images compared
to photographic ones are higher dynamic range (16 bits)
and dependence of pixels only on the temperature vari-
ations of self-radiating objects. The ambient temper-
ature variations add to the pixel values, not multiply
them as in the case of the illuminated scenes. We base
our algorithm on the 4-neighbor method and use lo-
cal context to switch between encoding tables as the
expected prediction error depends only on the differ-
ences between the known pizels invariant of their aver-
age value. This approach allows for building a 2D his-
togram for the prediction error and the “smoothness” of
the known pixels and using it to construct the encoding
tables. Table selection only depends on the four-pizel
values (so available to the decoder) and does not in-
crease the compressed stream. As a result, we could
losslessly compress thermal images to be less than 41%
of their original size. The resulting files were approz-
imately 34% smaller than their equivalent PNGs, and
35% smaller than TIFF files compressed with LZW.

1. Introduction

1.1 Overview

The base system is not new, but it will be explained
here in order to keep consistent definitions and in case
any reader is not familiar with the method.

The idea is based on how images are scanned in orig-
inally. Like a cathode-ray tube in a television, the al-
gorithm goes line by line, reading/writing each pixel
individually in a raster pattern.

Each pixel, as long as it is not on the top or side
boundaries, will have 4 neighbors that have already
been read into the machine. Those points can be ana-

lyzed and interpolated to find the next pixel’s value. A
visual demostration of this pattern is given in Figure 1.
The goal is to encode the error between that value and
the original value, save that, and use that to compress
and decompress the image. Even though a possibly
larger integer may need to be stored, it is more likely
that the guess will be correct or off by a small margin,
making the distribution better for compression.

The approach of using the neighboring pixels for
compression is not new, as evidenced by its use
in ISO/IEC 14495-1:1999 [?] and “CALIC-a context
based adaptive lossless image codec” [?], which were
both written more than 20 years before the publica-
tion of this paper. Our final implementation differs
from these methods, and others, in ways that we found
beneficial for thermal images, and in ways others may
find to be beneficial as well.

O s

Figure 1: The other 4 pixels are used to find the value of
the 5th.

1.2 Background

The images that were used in the development of
this paper were all thermal images, with the values in
this specific dataset the ranging from 19,197 to 25,935.
Total possible values with these sensors can range from
0 to 32,768. Most images had ranges of about 4,096
between the smallest and the largest pixel values. The
camera being used has 16 forward-facing thermal sen-
sors creating 16 similar thermal images every frame.



Thermal images are unique in that pixel values will
not depend on lighting but solely on the temperature
values of the objects they represent. Direct lighting
can change these values due to the heat exchange, but
the general case is that due to heat conduction, objects
will have near uniform temperature across the surface.
This creates a need for a different type of compression
system, one that is better suited for this different type
of data used in the IR spectrum. Thermal images also
have large offsets since when the environment heats up,
the pixel values increase while the relationship between
objects remains almost constant. For example, grass
will always be cooler than a similar colored surface due
to the different thermal properties, but when the day
gets hotter, both surfaces will get hotter. The images
are 16-bit because they have to save these larger tem-
perature values, even if they will be shown on a screen
in 8-bit format. Normal compression systems work on
thermal images, but since they are not optimized for
these, we found it necessary to use a different system.

2. Related Work
2.1 PNG

PNG is a lossless compression algorithm that also
operates using a single pass system [?]. The image is
separated into several blocks of arbitrary size, which
are then compressed using a combination of LZ77 and
Huffman encoding [?]. LZ77 operates by finding pat-
terns in the data and creating pointers to the origi-
nal instance of that pattern. For example, if there are
two identical blocks of just the color blue, the second
one only has to make reference to the first. Instead
of saving two full blocks, the second one is saved as
a pointer to the first, telling the decoder to use that
block. Huffman encoding is then used to save these
numbers, optimizing how the location data is stored.
If one pattern is more frequent, the algorithm should
optimize over this, producing an even smaller file [?].
The Huffman encoding in conjunction with LZ77 helps
form “deflate”, the algorithm summarized here, and
the one used in PNG.

Our algorithm uses Huffman encoding similarly, but
a completely different algorithm than LZ77. LZ77
seeks patterns between blocks, while ours has no block
structure and no explicit pattern functionality. Ours
uses the equivalent block size of 1, and instead of en-
coding the data, it encodes alternate data which is used
to compress.

2.2 LZW

LZW operates differently by creating a separate
code table that maps every sequence to a code. Al-
though this is used for an image, the original paper by

Welch [?] explains it through text examples, which will
be done here as well. Instead of looking at each charac-
ter individually, it looks at variable-length string chains
and compresses those. Passing through the items to be
compressed, if a phrase has already been encountered,
it saves the reference to the original phrase along with
the next character in the sequence. In this way, the
longer repeated phrases are automatically found and
can be compressed to be smaller. This system also
uses blocks like PNG in order to save patterns in the
data, but instead by looking at the whole data set as
it moves along, PNG only operates on a short portion
of the text [?].

Ours, similarly to PNG, only looks at a short portion
of the data, which may have an advantage over LZW
for images. Images generally do not have the same pat-
terns that text does, so it may be advantageous not to
use the entire corpus in compressing an image and in-
stead only evaluate it based on nearby objects. The
blue parts of the sky will be next to other blue parts of
the sky, and in the realm of thermal images, tempera-
tures will probably be most similar to nearby ones due
to how heat flows.

2.3 Similar Methods

Our prior searches did not find any very similar ap-
proaches, especially with 16-bit thermal images. There
are many papers however that may have influenced
ours indirectly or are similar to ours and need to be
mentioned for both their similarities and differences.
One paper that is close is “Encoding-interleaved hierar-
chical interpolation for lossless image compression” [?].
This method seems to operate with a similar end goal,
to save the interpolation, but operates using a different
system, including how it interpolates. Instead of using
neighboring pixels in a raster format, it uses vertical
and horizontal ribbons, and a different way of inter-
polating. The ribbons alternate, going between a row
that is directly saved and one that is not saved but
is later interpolated. By doing this, it is filling in the
gaps of an already robust image and saving the finer
details. This other method could possibly show an in-
crease in speed but not likely in overall compression.
This will not have the same benefit as ours since ours
uses interpolation on almost the entire image, instead
of just parts, helping it optimize over a larger amount
of data. This paper is also similar to “Iterative poly-
nomial interpolation and data compression” [?], where
the researchers did a similar approach but with differ-
ent shapes. The error numbers were still saved, but
they specifically used polynomial interpretation which
we did not see fit to use in ours.

The closest method is “Near-lossless image com-



pression by relaxation-labelled prediction” [?], which
is similar in the general principles of the interpolation
and encoding. The algorithm detailed in the paper uses
a clustering algorithm of the nearby points to create
the interpolation, saving the errors to be used later in
the reconstruction of the original image. This method
is much more complex, not using a direct interpolation
method but instead using a clustering algorithm to find
the next point.

This could potentially have an advantage over what
we did by using more points in the process, but in
proper implementation it would become too compli-
cated for our purposes. The goal for us was to have a
simple and efficient encoding operation, and this would
have too much to process. It also has a binning sys-
tem like ours, with theirs based off of the mean square
prediction error. The problem is that which bin it goes
into can shift over the classification process adding to
the complexity of the algorithm.

3. The Approach

To begin, the border values are encoded into the sys-
tem, starting with the first value. Once that is saved,
the rest of the values are just saved as the difference to
the first. This is not the most technical approach, but
it reduces complexity, leaving room for the body of the
system.

Huffman encoding performs well on data with vary-
ing frequency [?], making it a good candidate for saving
the error numbers. Figures 2 and 3 give a representa-
tion of why saving the error numbers is better than
saving the actual values. This is compounded on the
additive nature of thermal images, since temperature
values can range greatly, a system is needed that effi-
ciently incorporates that. Most pixels will be off from
the predicted values by low numbers since many objects
have close to uniform surface temperature or have an
almost uniform temperature gradient.

Planar interpolation between the 4 known points is
done in order to predict the next pixel value. Because
this is an overdetermined system, it will not only out-
put the predicted pixel value, but the square of the
residuals (squared euclidean norm of b - Ax) as well [?].
Other than in the title, we use the term “error” to de-
scribe the difference between the predicted pixel value
and the actual value, and the term “difference” to de-
scribe the square root of the residuals. This difference
number is a valuable predictor, not of the original pixel
value, but of the error that will be outputted. It is not
good enough to predict it outright, as there is too much
noise and not enough direct correlation, but it can be
used to create several different encoding tables that
can aid in compression. Another approach was also

used in testing, which was using the difference between
the maximum pixel value and the minimum. This had
similar results, but was not used in the final process
since the residuals were already automatically calcu-
lated, while the min and max differencing would have
to be done in addition to this, further complicating it.

40000

35000 4

30000 4

25000+

20000+

Frequency

15000

10000 A

5000

21800 22000 22200 22400 22600
Pixel Value

Figure 2: Encoding the Pixel Values

4000 -

3500

3000 1

Frequency
nN 1]
(=] wu
[=] o
o o

1 1

1500 4

1000 A

500

—100 =75

Error

Figure 3: Encoding the Error Values

In order to adjust for objects in images that are
known to have an unpredictable temperature (have
high difference values), a bin system is used. If a
plane is able to be drawn that contains all 4 points, it
makes sense that the error will be much smaller than
if the best-fitted plane was not very close to any of the
points. Something more certain is more likely to be
correctly estimated. 5 bins were used with splits cho-
sen by evenly distributing the difference numbers into
evenly sized bins. Many of the images had several dif-
ferent bin sizes ranging from 11 in the first category
to a difference of 30 as the size of the first category.



An average number between all of them was chosen in
order to save space.

This makes the system much better adapted to
larger ranges of error values, such as looking at grass or
another high frequency surface. The system performs
better than a standard system without bins on this
data since it is able to optimize better for these larger
values. As shown in 4, the median error gets worse as
difference increases. By focusing the root of the Huff-
man tree on the shift in error values, it is possible to
get better compression.

Histogram of Least Squares Differences vs Error

= Z5th Percentile 100
50th Percentile
—— 75ith Percentile 107
10
104
102
10
: 1°
300

Absolute Value of Difference of Least Squares

0
o 50 100 150 200 250
Absolute Value of Error Values to be Stored

Figure 4: Encoding the Error Values

4. Results

We attained an average compression ratio of 0.4057
on a set of 262 images, with compression ratios on indi-
vidual images ranging from 0.3685 to 0.4979. Because
the system runs off of a saved dictionary, it is better
to think of the system as a cross between an individ-
ual compression system and a larger archival tool. This
means that there are significant changes in compression
ratios depending on how many files are compressed at
a time, despite the ability to decompress files individ-
ually and independently.

When the size of the saved dictionary was included,
the compression ratio on the entire set only changed
from 0.4043 to 0.4057. However, when tested on a ran-
dom image in the set, it went from 0.3981 to 0.7508.
This is not a permanent issue, as changes to the method
can be made to fix this. These are outlined in the dis-
cussion section below.

This was tested on a set of a least 16 images, so this
does not affect us as much. When tested on a random
set of 16 images, the ratio only changed from 0.3973 to
0.4193.

Compression Rates
Original LZW PNG Ours
100% 61.94% 61.21% 40.57%

Our method created files that are on average 33.7%
smaller than PNG and 34.5% smaller than LWZ com-
pression on TIFF.

For estimation of limits of compression, we use in-
formation theory. Expected length of source code:
L=%, p(@)i(z)

I(x) is a length of codeword, corresponding to state x.
p(x) = 5&, n, - number of elements for state z, N - to-
tal number states. From information theory we have:
L > H Where H = — ) p(x)log, p(x) - Shannon en-
I = ZL?\;I(%) >

tropy. From the previous formula:

— >, p(x)logy p(x).
From that we have: compression rate > ﬁgsize
After averaging over 224 images, compression limit

is 0.37.

5. Discussion

The files produced through this method are much
smaller than the ones produced by the others, but this
comes at great computational costs in its current im-
plementation. PNG compression was several orders of
magnitude faster on the local machine than the method
that was used in this project. Using a compiled lan-
guage or integrated system instead of python will in-
crease the speed, but there are other improvements
that can be made.

The issue with numpy.linalg.solve was later ad-
dressed to fix the potential slowdown. Calculating the
inverse beforehand and using that in the system had
marginal temporal benefit. numpy.linalg.solve runs
in O(N3) for an N x N matrix, while the multiplica-
tion runs in a similar time. [?] The least squares method
mentioned in this project also has a shortcoming, but
this one cannot be solved as easily. The pseudoinverse
can be calculated beforehand, but the largest problem
is that it is solving the system for every pixel individ-
ually and calculating the norm. numpy.linalg.lstsq
itself runs in O(N3) for an N x N matrix [?], while the
pseudoinverse, when directly implemented, uses more
python runtime, adding to temporal complexity.

This compression suffers when it is only used on in-
dividual images, which is not a problem for the use
cases of this project. The test images came from a
camera that has 16 image sensors that work simulta-
neously. The camera works in multiple image incre-
ments and therefore creates large packets that can be
saved together, while still having the functionality of
decompressing individually. This saves greatly on the
memory that is required to view an image. It was there-
fore not seen necessary to create a different system to



compress individual files as individual images are not
created.

A potential workaround for this problem would be to
code extraneous values into the image directly instead
of adding them to the full dictionary. This has the
downside of not being able to integrate perfectly with
Huffman encoding. A leaf of the tree could be a trigger
to switch from Huffman encoding, and instead use an
alternate system to read in the bits. We did not do
this, but it would be a simple change for someone with
a different use case.



	Introduction
	Overview
	Background

	Related Work
	PNG
	LZW
	Similar Methods

	The Approach
	Results
	Discussion

