
Lossless Single Pass Image Compression by Interpolation

Dr. Andrey Filippov Nathaniel Callens Jr.
Kelly Chang Bryce Hepner

Elphel, Inc.
1455 W. 2200 S. #205, Salt Lake City, Utah 84119 USA

{andrey,bryce}@elphel.com

June 27, 2022

Abstract

This algorithm operates by scanning through each
pixel in a raster pattern, using already scanned pixels to
decompress the next pixel’s value. By saving the error
between the predicted pixel value and the actual value,
we were able to losslessly compress thermal images to
be less than 41% of their original size. The resulting
files were approximately 34% smaller than their equiv-
alent PNGs, and 35% smaller than LZW compression
with TIFF files.

1. Introduction

1.1 Technical Overview

The idea is based off of how images are scanned in
originally. Like a cathode-ray tube in a television, the
algorithm goes line by line, reading/writing each pixel
individually in a raster pattern.

Each pixel, as long as it is not on the top or side
boundaries, will have 4 neighbors that have already
been read into the machine. Those points can be an-
alyzed and interpolated to find the next pixel’s value.
The goal is to encode the error between that value and
the original value, save that, and use that to compress
and decompress the image. Even though a possibly
larger integer may need to be stored, it’s more likely
that the guess will be correct, or off by a small margin,
making the distribution and better for compression.

Figure 1: The other 4 pixels are used to find the value of
the 5th.

1.2 Background

The images that were used in the development of
this paper are all thermal images, with values ranging
from 19,197 to 25,935. Total possible values can range
from 0 to 32,768. Everything detailed here can still
apply to standard grayscale or RGB images, but for
testing, only 16 bit thermal images were used. Most
images had ranges of at most 4,096 between the small-
est and the largest pixel values. The camera being used
has 16 forward facing thermal sensors creating 16 sim-
ilar thermal images every frame.

2. Related Work

2.1 PNG

PNG is a lossless compression algorithm that also
operates using a single pass system[10]. The image is
separated into several blocks of arbitrary size, which
are then compressed using a combination of LZ77 and
Huffman encoding [7]. LZ77 operates by finding pat-
terns in the data and creating pointers to the original
instance of that pattern. For example, if there are two
identical blocks of just the color blue, the second one
only has to make reference to the first. Instead of sav-
ing two full blocks, the second one just contains the
location of the first, telling the decoder to use that
block. Huffman encoding is then used to save these
numbers, optimizing how the location data is stored.
If one pattern is more frequent, the algorithm should
optimize over this, producing an even smaller file[7].
The Huffman encoding portion is what separates LZ77
from “deflate”, the algorithm summarized here, and
the one used in PNG.

Our algorithm has a similar use of Huffman encod-
ing, but a completely different algorithm than LZ77.
LZ77 seeks patterns between blocks while ours has no
block structure and no explicit pattern functionality.
Ours uses the equivalent block size of 1, and instead

1



of encoding the data it encodes alternate information
which is used to compress.

2.2 LZW

LZW operates differently by creating a separate
code table that maps every sequence to a code. Al-
though this is used for an image, the original paper by
Welch [11] explains it through text examples which will
be done here as well . Instead of looking at each charac-
ter individually, it looks at variable length string chains
and compresses those. Passing through the items to be
compressed, if a phrase has already been encountered,
it saves the reference to the original phrase along with
the next character in sequence. In this way, the longer
repeated phrases are automatically found and can be
compressed to be smaller. This system also uses blocks
like PNG in order to save patterns in the data, but in-
stead by looking at the entire data as it moves along,
PNG only operates on a short portion of the text [7].

Ours, similarly to PNG, only looks at a short portion
of the data, which may have an advantage over LZW
for images. Images generally do not have the same
patterns that text does, so it may be advantageous to
not use the entire corpus in compressing an image and
instead only evaluate it based off of nearby objects.
The blue parts of the sky will be next to other blue
parts of the sky, and in the realm of thermal images,
objects will probably be most similar to nearby ones in
temperature due to how heat flows.

2.3 Similar Methods

Our research did not find any very similar ap-
proaches, especially with 16-bit thermal images. One
paper that comes close is “Encoding-interleaved hier-
archical interpolation for lossless image compression”
[1]. This method seems to operate with a similar end
goal, to save the interpolation, but operates on a dif-
ferent system, including how it interpolates. Instead
of using neighboring pixels in a raster format, it uses
vertical and horizontal ribbons, and a different way of
interpolating. The ribbons alternate, going between a
row that is just saved and one that is not saved but is
later interpolated. In this way it is filling in the gaps
of an already robust image and saving that finer detail.
It should show an increase in speed but not in overall
compression. This will not have the same benefit as
ours since ours uses interpolation on almost the entire
image, instead of just parts, optimizing over the larger
amount of saved error values.

This paper is also similar to “Iterative polynomial
interpolation and data compression” [6], where the re-
searchers did a similar approach but with different
shapes. The error numbers were still saved, but they

used specifically polynomial interpretation which we
did not see fit to use in ours.

The closest method is “Near-lossless image compres-
sion by relaxation-labelled prediction” [2] which has
similarity with the general principles of the interpola-
tion and encoding. The algorithm detailed in the pa-
per uses a clustering algorithm of the nearby points to
create the interpolation, saving the errors in order to
retrieve the original later. This method is much more
complex, not using a direct interpolation method but
instead using a clustering algorithm to find the next
point.

This could potentially have an advantage by using
more points in the process, but the implementation be-
comes too complicated and may lose value. The goal
for us was to have a simple and efficient encoding op-
eration, and this would have too many things to pro-
cess. It also has a binning system based off of the mean
square prediction error, but which bin it goes into can
shift over the classification process adding to the com-
plexity of the algorithm. The use of more points could
have been implemented into ours too but we chose not
to due to the potential additional temporal complexity.

3. The Approach

To begin, the border values are encoded into the sys-
tem starting with the first value. The values after that
are just modifications from the first value. There are
not many values here and the algorithm needs a place
to start. Other things could have been done but they
would have raised temporal complexity with marginal
gain. Once the middle points are reached, the pixel
to the left, top left, directly above, and top right have
already been read in. Each of these values is given a
point in the x-y plane, with the top left at (-1,1), top
pixel at (0,1), top right pixel at (1,1), and the middle
left pixel at (-1,0), giving the target (0,0). Using the
formula for a plane in 3D (ax + by + c = z) we get the
system of equations

−a + b + c = z0

b + c = z1

a + b + c = z2

−a + c = z3

.
These complete the form Ax = b as

A =


−1 1 1
0 1 1
1 1 1
−1 0 1


2



b =


z0
z1
z2
z3


Due to there being 4 equations and 4 unknowns, this

is unsolvable.
This can be corrected by making

A =

3 0 −1
0 3 3
1 −3 −4


and

b =

 −z0 + z2 − z3
z0 + z1 + z2

−z0 − z1 − z2 − z3


.

The new matrix is full rank and can therefore be
solved using numpy.linalg.solve [8]. The x that re-
sults corresponds to two values followed by the original
c from the ax+ by+ c = z form, which is the predicted
pixel value.

Huffman encoding performs well on data with vary-
ing frequency [9], which makes saving the error num-
bers a good candidate for using it. Most pixels will
be off by low numbers since many objects have close to
uniform surface temperature or have an almost uniform
temperature gradient.

Figure 2: Encoding the Pixel Values

In order to adjust for objects in images that are
known to have an unpredictable temperature (fail the
cases before), a bin system is used. The residuals from
numpy.linalg.lstsq [8] are used to determine the dif-
ference across the 4 known points, which is then used
to place it in a category. This number is the difference

Figure 3: Encoding the Error Values

between trying to fit a plane between 4 different points.
If a plane is able to be drawn that contains all 4 points,
it makes sense that the error will be much smaller than
if the best fitted plane was not very close to any of the
points. Something more certain in this case is likely to
be more correct. 5 bins were used with splits chosen by
evenly distributing the difference numbers into evenly
sized bins. Many of the images had several different
bin sizes ranging from 11 in the first category to a dif-
ference of 30 as the first category. An average number
between all of them was chosen, since using the average
versus specific bins had an effect on compression of less
than half a percent.

4. Results

We attained an average compression ratio of 0.4057
on a set of 262 images, with compression ratios ranging
from 0.3685 to 0.4979. Because the system as it stands
runs off of a saved dictionary, it is better to think of
the system as a cross between individual compression
and a larger archival tool. This means that there are
large changes in compression ratios depending on how
many files are compressed at a time, despite the ability
to decompress files individually.

When the size of the saved dictionary was included,
the compression ratio on the entire set only changed
from 0.4043 to 0.4057. However, when tested on just
the first image in the set, it went from 0.3981 to 0.7508.
This is not a permanent issue, as changes to the system
can be made to fix this. These are detailed in the
discussion section below.

We are using it on a set of at least 16
images, so this does not affect us as much.
When tested on a random set of 16 images,
the ratio only changed from 0.3973 to 0.4193.

3



Compression Rates
Original LZW PNG Ours
100% 61.94% 61.21% 40.57%

The created file system together created files that
are on average 33.7% smaller than PNG and 34.5%
smaller than LWZ compression on TIFF.

5. Discussion

The files produced through this method are much
smaller than the others tested but at great compu-
tational costs. PNG compression is several orders of
magnitude faster than the code that was used in this
project. Using a compiled language instead of python
will increase the speed but there are other improve-
ments that could be made. Part of the problem with
the speed was the numpy.linalg.solve [8] function,
which is not the fastest way to solve the system. This
method operates in O(N3) [5] for an N × N ma-
trix, while more recent algorithms have placed it at
O(n2.37286) [3] Using an approximation could be help-
ful. Although it is potentially lossy, it would greatly
improve computational complexity. The least squares
method mentioned in this project also has the same
shortcoming. It runs in O(N3) for a similar N × N
matrix [4].

This compression suffers greatly when it is only used
on individual images, which is not a problem for the
project it was designed for. The camera that this com-
pression was built for has 16 image sensors that work
simultaneously. They work in 100 image increments
and therefore create large packets that can be saved
together, while still having the functionality of decom-
pressing individually. This saves greatly on the mem-
ory that is required to view an image. It was there-
fore not seen necessary to create a different system to
compress individual files as individual images are not
created.

A potential workaround for this problem would be to
code extraneous values into the image directly instead
of adding them to the full dictionary. This has the
downside of not being able to integrate perfectly with
Huffman encoding. A leaf of the tree would have to
be a trigger to not use Huffman encoding anymore and
use an alternate system to read in the bits. We chose
not to do this but it would be a simple operation for
someone with a different use case.

References

[1] A. Abrardo, L. Alparone, and F. Bartolini. Encoding-
interleaved hierarchical interpolation for lossless image
compression. Signal Processing, 56(3):321–328, 1997.
2

[2] B. Aiazzi, L. Alparone, and S. Baronti. Near-lossless
image compression by relaxation-labelled prediction.
Signal Processing, 82(11):1619–1631, 2002. 2

[3] J. Alman and V. V. Williams. A refined laser
method and faster matrix multiplication. CoRR,
abs/2010.05846, 2020. 4

[4] J. Alman and V. V. Williams. Algorithm 853: an effi-
cient algorithm for solving rank-deficient least squares
problems. ACM Transactions on Mathematical Soft-
ware, Vol. x, No. x,, 20xx. 4

[5] S. Blackford. LAPACK Benchmark. http://www.

netlib.org/lapack/lug/node71.html, Oct. 1999.
Accessed: 2022-6-23. 4

[6] M. DÆhlen and M. Floater. Iterative polynomial inter-
polation and data compression. Numerical Algorithms,
5(3):165–177, Mar 1993. 2

[7] L. P. Deutsch. DEFLATE Compressed Data For-
mat Specification version 1.3. https://www.w3.org/

Graphics/PNG/RFC-1951, 1996. Accessed: 6/14/2022.
1, 2

[8] C. R. Harris, K. J. Millman, S. J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362,
Sept. 2020. 3, 4

[9] D. A. Huffman. A method for the construction of min-
imum redundancy codes. Proceedings of the Institute
of Radio Engineers, 40(9):1098–1101, Sept. 1952. 3

[10] Mark Adler, Thomas Boutell, John Bowler, Christian
Brunschen, Adam M. Costello, Lee Daniel Crocker,
Andreas Dilger, Oliver Fromme, Jean-loup Gailly,
Chris Herborth, Alex Jakulin, Neal Kettler, Tom
Lane, Alexander Lehmann, Chris Lilley, Dave Mar-
tindale, Owen Mortensen, Keith S. Pickens, Robert P.
Poole, Glenn Randers-Pehrson, Greg Roelofs, Willem
van Schaik, Guy Schalnat, Paul Schmidt, Michael
Stokes, Tim Wegner, Jeremy Wohl. Portable Net-
work Graphics (PNG) Specification (Second Edition).
https://www.w3.org/TR/PNG/, Nov. 2003. Accessed:
6/23/2022. 1

[11] Welch. A technique for high-performance data com-
pression. Computer, 17(6):8–19, 1984. 2

4

http://www.netlib.org/lapack/lug/node71.html
http://www.netlib.org/lapack/lug/node71.html
https://www.w3.org/Graphics/PNG/RFC-1951
https://www.w3.org/Graphics/PNG/RFC-1951
https://www.w3.org/TR/PNG/

	Introduction
	Technical Overview
	Background

	Related Work
	PNG
	LZW
	Similar Methods

	The Approach
	Results
	Discussion

