Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
E
ezynq
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
ezynq
Commits
d8deaa75
Commit
d8deaa75
authored
Feb 22, 2016
by
Oleg Dzhimiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
test 6: add zynq driver
parent
c171a0c5
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1348 additions
and
0 deletions
+1348
-0
Makefile
u-boot-tree/drivers/mtd/nand/Makefile
+82
-0
zynq_nand.c
u-boot-tree/drivers/mtd/nand/zynq_nand.c
+1266
-0
No files found.
u-boot-tree/drivers/mtd/nand/Makefile
0 → 100644
View file @
d8deaa75
#
# (C) Copyright 2006
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
#
# SPDX-License-Identifier: GPL-2.0+
#
ifdef
CONFIG_SPL_BUILD
ifdef
CONFIG_SPL_NAND_DRIVERS
NORMAL_DRIVERS
=
y
endif
obj-$(CONFIG_SPL_NAND_AM33XX_BCH)
+=
am335x_spl_bch.o
obj-$(CONFIG_SPL_NAND_DENALI)
+=
denali_spl.o
obj-$(CONFIG_SPL_NAND_DOCG4)
+=
docg4_spl.o
obj-$(CONFIG_SPL_NAND_SIMPLE)
+=
nand_spl_simple.o
obj-$(CONFIG_SPL_NAND_LOAD)
+=
nand_spl_load.o
obj-$(CONFIG_SPL_NAND_ECC)
+=
nand_ecc.o
obj-$(CONFIG_SPL_NAND_BASE)
+=
nand_base.o
obj-$(CONFIG_SPL_NAND_INIT)
+=
nand.o
ifeq
($(CONFIG_SPL_ENV_SUPPORT),y)
obj-$(CONFIG_ENV_IS_IN_NAND)
+=
nand_util.o
endif
else
# not spl
NORMAL_DRIVERS
=
y
obj-y
+=
nand.o
obj-y
+=
nand_bbt.o
obj-y
+=
nand_ids.o
obj-y
+=
nand_util.o
obj-y
+=
nand_ecc.o
obj-y
+=
nand_base.o
obj-y
+=
nand_timings.o
endif
# not spl
ifdef
NORMAL_DRIVERS
obj-$(CONFIG_NAND_ECC_BCH)
+=
nand_bch.o
obj-$(CONFIG_NAND_ATMEL)
+=
atmel_nand.o
obj-$(CONFIG_NAND_ARASAN)
+=
arasan_nfc.o
obj-$(CONFIG_DRIVER_NAND_BFIN)
+=
bfin_nand.o
obj-$(CONFIG_NAND_DAVINCI)
+=
davinci_nand.o
obj-$(CONFIG_NAND_DENALI)
+=
denali.o
obj-$(CONFIG_NAND_FSL_ELBC)
+=
fsl_elbc_nand.o
obj-$(CONFIG_NAND_FSL_IFC)
+=
fsl_ifc_nand.o
obj-$(CONFIG_NAND_FSL_UPM)
+=
fsl_upm.o
obj-$(CONFIG_NAND_FSMC)
+=
fsmc_nand.o
obj-$(CONFIG_NAND_JZ4740)
+=
jz4740_nand.o
obj-$(CONFIG_NAND_KB9202)
+=
kb9202_nand.o
obj-$(CONFIG_NAND_KIRKWOOD)
+=
kirkwood_nand.o
obj-$(CONFIG_NAND_KMETER1)
+=
kmeter1_nand.o
obj-$(CONFIG_NAND_LPC32XX_MLC)
+=
lpc32xx_nand_mlc.o
obj-$(CONFIG_NAND_LPC32XX_SLC)
+=
lpc32xx_nand_slc.o
obj-$(CONFIG_NAND_MPC5121_NFC)
+=
mpc5121_nfc.o
obj-$(CONFIG_NAND_VF610_NFC)
+=
vf610_nfc.o
obj-$(CONFIG_NAND_MXC)
+=
mxc_nand.o
obj-$(CONFIG_NAND_MXS)
+=
mxs_nand.o
obj-$(CONFIG_NAND_NDFC)
+=
ndfc.o
obj-$(CONFIG_NAND_PXA3XX)
+=
pxa3xx_nand.o
obj-$(CONFIG_NAND_S3C2410)
+=
s3c2410_nand.o
obj-$(CONFIG_NAND_SPEAR)
+=
spr_nand.o
obj-$(CONFIG_TEGRA_NAND)
+=
tegra_nand.o
obj-$(CONFIG_NAND_OMAP_GPMC)
+=
omap_gpmc.o
obj-$(CONFIG_NAND_OMAP_ELM)
+=
omap_elm.o
obj-$(CONFIG_NAND_PLAT)
+=
nand_plat.o
obj-$(CONFIG_NAND_DOCG4)
+=
docg4.o
obj-$(CONFIG_NAND_ZYNQ)
+=
zynq_nand.o
else
# minimal SPL drivers
obj-$(CONFIG_NAND_FSL_ELBC)
+=
fsl_elbc_spl.o
obj-$(CONFIG_NAND_FSL_IFC)
+=
fsl_ifc_spl.o
obj-$(CONFIG_NAND_MXC)
+=
mxc_nand_spl.o
obj-$(CONFIG_NAND_MXS)
+=
mxs_nand_spl.o
mxs_nand.o
obj-$(CONFIG_NAND_SUNXI)
+=
sunxi_nand_spl.o
endif
# drivers
u-boot-tree/drivers/mtd/nand/zynq_nand.c
0 → 100644
View file @
d8deaa75
/*
* Xilinx Zynq NAND Flash Controller Driver
* This driver is based on plat_nand.c and mxc_nand.c drivers
*
* Copyright (C) 2009 - 2013 Xilinx, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
/* The NAND flash driver defines */
#define ZYNQ_NAND_CMD_PHASE 1
/* End command valid in command phase */
#define ZYNQ_NAND_DATA_PHASE 2
/* End command valid in data phase */
#define ZYNQ_NAND_ECC_SIZE 512
/* Size of data for ECC operation */
/* Flash memory controller operating parameters */
#define ZYNQ_NAND_CLR_CONFIG ((0x1 << 1) |
/* Disable interrupt */
\
(0x1 << 4) |
/* Clear interrupt */
\
(0x1 << 6))
/* Disable ECC interrupt */
/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
#define ZYNQ_NAND_SET_CYCLES ((0x2 << 20) |
/* t_rr from nand_cycles */
\
(0x2 << 17) |
/* t_ar from nand_cycles */
\
(0x1 << 14) |
/* t_clr from nand_cycles */
\
(0x3 << 11) |
/* t_wp from nand_cycles */
\
(0x2 << 8) |
/* t_rea from nand_cycles */
\
(0x5 << 4) |
/* t_wc from nand_cycles */
\
(0x5 << 0))
/* t_rc from nand_cycles */
#define ZYNQ_NAND_SET_OPMODE 0x0
#define ZYNQ_NAND_DIRECT_CMD ((0x4 << 23) |
/* Chip 0 from interface 1 */
\
(0x2 << 21))
/* UpdateRegs operation */
#define ZYNQ_NAND_ECC_CONFIG ((0x1 << 2) |
/* ECC available on APB */
\
(0x1 << 4) |
/* ECC read at end of page */
\
(0x0 << 5))
/* No Jumping */
#define ZYNQ_NAND_ECC_CMD1 ((0x80) |
/* Write command */
\
(0x00 << 8) |
/* Read command */
\
(0x30 << 16) |
/* Read End command */
\
(0x1 << 24))
/* Read End command calid */
#define ZYNQ_NAND_ECC_CMD2 ((0x85) |
/* Write col change cmd */
\
(0x05 << 8) |
/* Read col change cmd */
\
(0xE0 << 16) |
/* Read col change end cmd */
\
(0x1 << 24))
/* Read col change
end cmd valid */
/* AXI Address definitions */
#define START_CMD_SHIFT 3
#define END_CMD_SHIFT 11
#define END_CMD_VALID_SHIFT 20
#define ADDR_CYCLES_SHIFT 21
#define CLEAR_CS_SHIFT 21
#define ECC_LAST_SHIFT 10
#define COMMAND_PHASE (0 << 19)
#define DATA_PHASE (1 << 19)
#define ZYNQ_NAND_ECC_LAST (1 << ECC_LAST_SHIFT)
/* Set ECC_Last */
#define ZYNQ_NAND_CLEAR_CS (1 << CLEAR_CS_SHIFT)
/* Clear chip select */
/* ECC block registers bit position and bit mask */
#define ZYNQ_NAND_ECC_BUSY (1 << 6)
/* ECC block is busy */
#define ZYNQ_NAND_ECC_MASK 0x00FFFFFF
/* ECC value mask */
#define ZYNQ_NAND_ROW_ADDR_CYCL_MASK 0x0F
#define ZYNQ_NAND_COL_ADDR_CYCL_MASK 0xF0
/* NAND MIO buswidth count*/
#define ZYNQ_NAND_MIO_NUM_NAND_8BIT 13
#define ZYNQ_NAND_MIO_NUM_NAND_16BIT 8
/* NAND buswidth */
enum
zynq_nand_bus_width
{
NAND_BW_UNKNOWN
=
-
1
,
NAND_BW_8BIT
,
NAND_BW_16BIT
,
};
/* SMC register set */
struct
zynq_nand_smc_regs
{
u32
csr
;
/* 0x00 */
u32
reserved0
[
2
];
u32
cfr
;
/* 0x0C */
u32
dcr
;
/* 0x10 */
u32
scr
;
/* 0x14 */
u32
sor
;
/* 0x18 */
u32
reserved1
[
249
];
u32
esr
;
/* 0x400 */
u32
emcr
;
/* 0x404 */
u32
emcmd1r
;
/* 0x408 */
u32
emcmd2r
;
/* 0x40C */
u32
reserved2
[
2
];
u32
eval0r
;
/* 0x418 */
};
#define zynq_nand_smc_base ((struct zynq_nand_smc_regs *)ZYNQ_SMC_BASEADDR)
/*
* struct zynq_nand_command_format - Defines NAND flash command format
* @start_cmd: First cycle command (Start command)
* @end_cmd: Second cycle command (Last command)
* @addr_cycles: Number of address cycles required to send the address
* @end_cmd_valid: The second cycle command is valid for cmd or data phase
*/
struct
zynq_nand_command_format
{
int
start_cmd
;
int
end_cmd
;
u8
addr_cycles
;
u8
end_cmd_valid
;
};
/*
* struct zynq_nand_info - Defines the NAND flash driver instance
* @parts: Pointer to the mtd_partition structure
* @nand_base: Virtual address of the NAND flash device
* @end_cmd_pending: End command is pending
* @end_cmd: End command
*/
struct
zynq_nand_info
{
#ifdef CONFIG_MTD_PARTITIONS
struct
mtd_partition
*
parts
;
#endif
void
__iomem
*
nand_base
;
unsigned
long
end_cmd_pending
;
unsigned
long
end_cmd
;
};
#define ONDIE_ECC_FEATURE_ADDR 0x90
/* The NAND flash operations command format */
static
const
struct
zynq_nand_command_format
zynq_nand_commands
[]
=
{
{
NAND_CMD_READ0
,
NAND_CMD_READSTART
,
5
,
ZYNQ_NAND_CMD_PHASE
},
{
NAND_CMD_RNDOUT
,
NAND_CMD_RNDOUTSTART
,
2
,
ZYNQ_NAND_CMD_PHASE
},
{
NAND_CMD_READID
,
NAND_CMD_NONE
,
1
,
NAND_CMD_NONE
},
{
NAND_CMD_STATUS
,
NAND_CMD_NONE
,
0
,
NAND_CMD_NONE
},
{
NAND_CMD_SEQIN
,
NAND_CMD_PAGEPROG
,
5
,
ZYNQ_NAND_DATA_PHASE
},
{
NAND_CMD_RNDIN
,
NAND_CMD_NONE
,
2
,
NAND_CMD_NONE
},
{
NAND_CMD_ERASE1
,
NAND_CMD_ERASE2
,
3
,
ZYNQ_NAND_CMD_PHASE
},
{
NAND_CMD_RESET
,
NAND_CMD_NONE
,
0
,
NAND_CMD_NONE
},
{
NAND_CMD_PARAM
,
NAND_CMD_NONE
,
1
,
NAND_CMD_NONE
},
{
NAND_CMD_GET_FEATURES
,
NAND_CMD_NONE
,
1
,
NAND_CMD_NONE
},
{
NAND_CMD_SET_FEATURES
,
NAND_CMD_NONE
,
1
,
NAND_CMD_NONE
},
{
NAND_CMD_NONE
,
NAND_CMD_NONE
,
0
,
0
},
/* Add all the flash commands supported by the flash device and Linux
* The cache program command is not supported by driver because driver
* cant differentiate between page program and cached page program from
* start command, these commands can be differentiated through end
* command, which doesn't fit in to the driver design. The cache program
* command is not supported by NAND subsystem also, look at 1612 line
* number (in nand_write_page function) of nand_base.c file.
* {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, ZYNQ_NAND_YES}
*/
};
/* Define default oob placement schemes for large and small page devices */
static
struct
nand_ecclayout
nand_oob_16
=
{
.
eccbytes
=
3
,
.
eccpos
=
{
13
,
14
,
15
},
.
oobfree
=
{
{
.
offset
=
0
,
.
length
=
12
}
}
};
static
struct
nand_ecclayout
nand_oob_64
=
{
.
eccbytes
=
12
,
.
eccpos
=
{
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
62
,
63
},
.
oobfree
=
{
{
.
offset
=
2
,
.
length
=
50
}
}
};
static
struct
nand_ecclayout
ondie_nand_oob_64
=
{
.
eccbytes
=
32
,
.
eccpos
=
{
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
56
,
57
,
58
,
59
,
60
,
61
,
62
,
63
},
.
oobfree
=
{
{
.
offset
=
4
,
.
length
=
4
},
{
.
offset
=
20
,
.
length
=
4
},
{
.
offset
=
36
,
.
length
=
4
},
{
.
offset
=
52
,
.
length
=
4
}
}
};
/* Generic flash bbt decriptors */
static
u8
bbt_pattern
[]
=
{
'B'
,
'b'
,
't'
,
'0'
};
static
u8
mirror_pattern
[]
=
{
'1'
,
't'
,
'b'
,
'B'
};
static
struct
nand_bbt_descr
bbt_main_descr
=
{
.
options
=
NAND_BBT_LASTBLOCK
|
NAND_BBT_CREATE
|
NAND_BBT_WRITE
|
NAND_BBT_2BIT
|
NAND_BBT_VERSION
|
NAND_BBT_PERCHIP
,
.
offs
=
4
,
.
len
=
4
,
.
veroffs
=
20
,
.
maxblocks
=
4
,
.
pattern
=
bbt_pattern
};
static
struct
nand_bbt_descr
bbt_mirror_descr
=
{
.
options
=
NAND_BBT_LASTBLOCK
|
NAND_BBT_CREATE
|
NAND_BBT_WRITE
|
NAND_BBT_2BIT
|
NAND_BBT_VERSION
|
NAND_BBT_PERCHIP
,
.
offs
=
4
,
.
len
=
4
,
.
veroffs
=
20
,
.
maxblocks
=
4
,
.
pattern
=
mirror_pattern
};
/*
* zynq_nand_waitfor_ecc_completion - Wait for ECC completion
*
* returns: status for command completion, -1 for Timeout
*/
static
int
zynq_nand_waitfor_ecc_completion
(
void
)
{
unsigned
long
timeout
;
u32
status
;
/* Wait max 10ms */
timeout
=
10
;
status
=
readl
(
&
zynq_nand_smc_base
->
esr
);
while
(
status
&
ZYNQ_NAND_ECC_BUSY
)
{
status
=
readl
(
&
zynq_nand_smc_base
->
esr
);
if
(
timeout
==
0
)
return
-
1
;
timeout
--
;
udelay
(
1
);
}
return
status
;
}
/*
* zynq_nand_init_nand_flash - Initialize NAND controller
* @option: Device property flags
*
* This function initializes the NAND flash interface on the NAND controller.
*
* returns: 0 on success or error value on failure
*/
static
int
zynq_nand_init_nand_flash
(
int
option
)
{
u32
status
;
/* disable interrupts */
writel
(
ZYNQ_NAND_CLR_CONFIG
,
&
zynq_nand_smc_base
->
cfr
);
/* Initialize the NAND interface by setting cycles and operation mode */
writel
(
ZYNQ_NAND_SET_CYCLES
,
&
zynq_nand_smc_base
->
scr
);
if
(
option
&
NAND_BUSWIDTH_16
)
writel
((
ZYNQ_NAND_SET_OPMODE
|
0x1
),
&
zynq_nand_smc_base
->
sor
);
else
writel
(
ZYNQ_NAND_SET_OPMODE
,
&
zynq_nand_smc_base
->
sor
);
writel
(
ZYNQ_NAND_DIRECT_CMD
,
&
zynq_nand_smc_base
->
dcr
);
/* Wait till the ECC operation is complete */
status
=
zynq_nand_waitfor_ecc_completion
();
if
(
status
<
0
)
{
printf
(
"%s: Timeout
\n
"
,
__func__
);
return
status
;
}
/* Set the command1 and command2 register */
writel
(
ZYNQ_NAND_ECC_CMD1
,
&
zynq_nand_smc_base
->
emcmd1r
);
writel
(
ZYNQ_NAND_ECC_CMD2
,
&
zynq_nand_smc_base
->
emcmd2r
);
return
0
;
}
/*
* zynq_nand_calculate_hwecc - Calculate Hardware ECC
* @mtd: Pointer to the mtd_info structure
* @data: Pointer to the page data
* @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
*
* This function retrieves the Hardware ECC data from the controller and returns
* ECC data back to the MTD subsystem.
*
* returns: 0 on success or error value on failure
*/
static
int
zynq_nand_calculate_hwecc
(
struct
mtd_info
*
mtd
,
const
u8
*
data
,
u8
*
ecc_code
)
{
u32
ecc_value
=
0
;
u8
ecc_reg
,
ecc_byte
;
u32
ecc_status
;
/* Wait till the ECC operation is complete */
ecc_status
=
zynq_nand_waitfor_ecc_completion
();
if
(
ecc_status
<
0
)
{
printf
(
"%s: Timeout
\n
"
,
__func__
);
return
ecc_status
;
}
for
(
ecc_reg
=
0
;
ecc_reg
<
4
;
ecc_reg
++
)
{
/* Read ECC value for each block */
ecc_value
=
readl
(
&
zynq_nand_smc_base
->
eval0r
+
ecc_reg
);
ecc_status
=
(
ecc_value
>>
24
)
&
0xFF
;
/* ECC value valid */
if
(
ecc_status
&
0x40
)
{
for
(
ecc_byte
=
0
;
ecc_byte
<
3
;
ecc_byte
++
)
{
/* Copy ECC bytes to MTD buffer */
*
ecc_code
=
ecc_value
&
0xFF
;
ecc_value
=
ecc_value
>>
8
;
ecc_code
++
;
}
}
else
{
debug
(
"%s: ecc status failed
\n
"
,
__func__
);
}
}
return
0
;
}
/*
* onehot - onehot function
* @value: value to check for onehot
*
* This function checks whether a value is onehot or not.
* onehot is if and only if onebit is set.
*
*/
static
int
onehot
(
unsigned
short
value
)
{
return
((
value
&
(
value
-
1
))
==
0
);
}
/*
* zynq_nand_correct_data - ECC correction function
* @mtd: Pointer to the mtd_info structure
* @buf: Pointer to the page data
* @read_ecc: Pointer to the ECC value read from spare data area
* @calc_ecc: Pointer to the calculated ECC value
*
* This function corrects the ECC single bit errors & detects 2-bit errors.
*
* returns: 0 if no ECC errors found
* 1 if single bit error found and corrected.
* -1 if multiple ECC errors found.
*/
static
int
zynq_nand_correct_data
(
struct
mtd_info
*
mtd
,
unsigned
char
*
buf
,
unsigned
char
*
read_ecc
,
unsigned
char
*
calc_ecc
)
{
unsigned
char
bit_addr
;
unsigned
int
byte_addr
;
unsigned
short
ecc_odd
,
ecc_even
;
unsigned
short
read_ecc_lower
,
read_ecc_upper
;
unsigned
short
calc_ecc_lower
,
calc_ecc_upper
;
read_ecc_lower
=
(
read_ecc
[
0
]
|
(
read_ecc
[
1
]
<<
8
))
&
0xfff
;
read_ecc_upper
=
((
read_ecc
[
1
]
>>
4
)
|
(
read_ecc
[
2
]
<<
4
))
&
0xfff
;
calc_ecc_lower
=
(
calc_ecc
[
0
]
|
(
calc_ecc
[
1
]
<<
8
))
&
0xfff
;
calc_ecc_upper
=
((
calc_ecc
[
1
]
>>
4
)
|
(
calc_ecc
[
2
]
<<
4
))
&
0xfff
;
ecc_odd
=
read_ecc_lower
^
calc_ecc_lower
;
ecc_even
=
read_ecc_upper
^
calc_ecc_upper
;
if
((
ecc_odd
==
0
)
&&
(
ecc_even
==
0
))
return
0
;
/* no error */
else
if
(
ecc_odd
==
(
~
ecc_even
&
0xfff
))
{
/* bits [11:3] of error code is byte offset */
byte_addr
=
(
ecc_odd
>>
3
)
&
0x1ff
;
/* bits [2:0] of error code is bit offset */
bit_addr
=
ecc_odd
&
0x7
;
/* Toggling error bit */
buf
[
byte_addr
]
^=
(
1
<<
bit_addr
);
return
1
;
}
else
if
(
onehot
(
ecc_odd
|
ecc_even
)
==
1
)
{
return
1
;
/* one error in parity */
}
else
{
return
-
1
;
/* Uncorrectable error */
}
}
/*
* zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
* @sndcmd: flag whether to issue read command or not
*/
static
int
zynq_nand_read_oob
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
int
page
)
{
unsigned
long
data_width
=
4
;
unsigned
long
data_phase_addr
=
0
;
u8
*
p
;
chip
->
cmdfunc
(
mtd
,
NAND_CMD_READOOB
,
0
,
page
);
p
=
chip
->
oob_poi
;
chip
->
read_buf
(
mtd
,
p
,
(
mtd
->
oobsize
-
data_width
));
p
+=
(
mtd
->
oobsize
-
data_width
);
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_R
;
data_phase_addr
|=
ZYNQ_NAND_CLEAR_CS
;
chip
->
IO_ADDR_R
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
read_buf
(
mtd
,
p
,
data_width
);
return
0
;
}
/*
* zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static
int
zynq_nand_write_oob
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
int
page
)
{
int
status
=
0
;
const
u8
*
buf
=
chip
->
oob_poi
;
unsigned
long
data_width
=
4
;
unsigned
long
data_phase_addr
=
0
;
chip
->
cmdfunc
(
mtd
,
NAND_CMD_SEQIN
,
mtd
->
writesize
,
page
);
chip
->
write_buf
(
mtd
,
buf
,
(
mtd
->
oobsize
-
data_width
));
buf
+=
(
mtd
->
oobsize
-
data_width
);
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_W
;
data_phase_addr
|=
ZYNQ_NAND_CLEAR_CS
;
data_phase_addr
|=
(
1
<<
END_CMD_VALID_SHIFT
);
chip
->
IO_ADDR_W
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
write_buf
(
mtd
,
buf
,
data_width
);
/* Send command to program the OOB data */
chip
->
cmdfunc
(
mtd
,
NAND_CMD_PAGEPROG
,
-
1
,
-
1
);
status
=
chip
->
waitfunc
(
mtd
,
chip
);
return
status
&
NAND_STATUS_FAIL
?
-
EIO
:
0
;
}
/*
* zynq_nand_read_page_raw - [Intern] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to read
*/
static
int
zynq_nand_read_page_raw
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
u8
*
buf
,
int
oob_required
,
int
page
)
{
unsigned
long
data_width
=
4
;
unsigned
long
data_phase_addr
=
0
;
u8
*
p
;
chip
->
read_buf
(
mtd
,
buf
,
mtd
->
writesize
);
p
=
chip
->
oob_poi
;
chip
->
read_buf
(
mtd
,
p
,
(
mtd
->
oobsize
-
data_width
));
p
+=
(
mtd
->
oobsize
-
data_width
);
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_R
;
data_phase_addr
|=
ZYNQ_NAND_CLEAR_CS
;
chip
->
IO_ADDR_R
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
read_buf
(
mtd
,
p
,
data_width
);
return
0
;
}
static
int
zynq_nand_read_page_raw_nooob
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
u8
*
buf
,
int
oob_required
,
int
page
)
{
chip
->
read_buf
(
mtd
,
buf
,
mtd
->
writesize
);
return
0
;
}
static
int
zynq_nand_read_subpage_raw
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
uint32_t
offs
,
uint32_t
len
,
uint8_t
*
buf
,
int
page
)
{
if
(
offs
!=
0
)
{
chip
->
cmdfunc
(
mtd
,
NAND_CMD_RNDOUT
,
offs
,
-
1
);
buf
+=
offs
;
}
chip
->
read_buf
(
mtd
,
buf
,
len
);
return
0
;
}
/*
* zynq_nand_write_page_raw - [Intern] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static
int
zynq_nand_write_page_raw
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
const
u8
*
buf
,
int
oob_required
)
{
unsigned
long
data_width
=
4
;
unsigned
long
data_phase_addr
=
0
;
u8
*
p
;
chip
->
write_buf
(
mtd
,
buf
,
mtd
->
writesize
);
p
=
chip
->
oob_poi
;
chip
->
write_buf
(
mtd
,
p
,
(
mtd
->
oobsize
-
data_width
));
p
+=
(
mtd
->
oobsize
-
data_width
);
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_W
;
data_phase_addr
|=
ZYNQ_NAND_CLEAR_CS
;
data_phase_addr
|=
(
1
<<
END_CMD_VALID_SHIFT
);
chip
->
IO_ADDR_W
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
write_buf
(
mtd
,
p
,
data_width
);
return
0
;
}
/*
* nand_write_page_hwecc - Hardware ECC based page write function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* This functions writes data and hardware generated ECC values in to the page.
*/
static
int
zynq_nand_write_page_hwecc
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
const
u8
*
buf
,
int
oob_required
)
{
int
i
,
eccsize
=
chip
->
ecc
.
size
;
int
eccsteps
=
chip
->
ecc
.
steps
;
u8
*
ecc_calc
=
chip
->
buffers
->
ecccalc
;
const
u8
*
p
=
buf
;
u32
*
eccpos
=
chip
->
ecc
.
layout
->
eccpos
;
unsigned
long
data_phase_addr
=
0
;
unsigned
long
data_width
=
4
;
u8
*
oob_ptr
;
for
(;
(
eccsteps
-
1
);
eccsteps
--
)
{
chip
->
write_buf
(
mtd
,
p
,
eccsize
);
p
+=
eccsize
;
}
chip
->
write_buf
(
mtd
,
p
,
(
eccsize
-
data_width
));
p
+=
(
eccsize
-
data_width
);
/* Set ECC Last bit to 1 */
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_W
;
data_phase_addr
|=
ZYNQ_NAND_ECC_LAST
;
chip
->
IO_ADDR_W
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
write_buf
(
mtd
,
p
,
data_width
);
/* Wait for ECC to be calculated and read the error values */
p
=
buf
;
chip
->
ecc
.
calculate
(
mtd
,
p
,
&
ecc_calc
[
0
]);
for
(
i
=
0
;
i
<
chip
->
ecc
.
total
;
i
++
)
chip
->
oob_poi
[
eccpos
[
i
]]
=
~
(
ecc_calc
[
i
]);
/* Clear ECC last bit */
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_W
;
data_phase_addr
&=
~
ZYNQ_NAND_ECC_LAST
;
chip
->
IO_ADDR_W
=
(
void
__iomem
*
)
data_phase_addr
;
/* Write the spare area with ECC bytes */
oob_ptr
=
chip
->
oob_poi
;
chip
->
write_buf
(
mtd
,
oob_ptr
,
(
mtd
->
oobsize
-
data_width
));
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_W
;
data_phase_addr
|=
ZYNQ_NAND_CLEAR_CS
;
data_phase_addr
|=
(
1
<<
END_CMD_VALID_SHIFT
);
chip
->
IO_ADDR_W
=
(
void
__iomem
*
)
data_phase_addr
;
oob_ptr
+=
(
mtd
->
oobsize
-
data_width
);
chip
->
write_buf
(
mtd
,
oob_ptr
,
data_width
);
return
0
;
}
/*
* zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
* write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static
int
zynq_nand_write_page_swecc
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
const
u8
*
buf
,
int
oob_required
)
{
int
i
,
eccsize
=
chip
->
ecc
.
size
;
int
eccbytes
=
chip
->
ecc
.
bytes
;
int
eccsteps
=
chip
->
ecc
.
steps
;
u8
*
ecc_calc
=
chip
->
buffers
->
ecccalc
;
const
u8
*
p
=
buf
;
u32
*
eccpos
=
chip
->
ecc
.
layout
->
eccpos
;
/* Software ecc calculation */
for
(
i
=
0
;
eccsteps
;
eccsteps
--
,
i
+=
eccbytes
,
p
+=
eccsize
)
chip
->
ecc
.
calculate
(
mtd
,
p
,
&
ecc_calc
[
i
]);
for
(
i
=
0
;
i
<
chip
->
ecc
.
total
;
i
++
)
chip
->
oob_poi
[
eccpos
[
i
]]
=
ecc_calc
[
i
];
return
chip
->
ecc
.
write_page_raw
(
mtd
,
chip
,
buf
,
1
);
}
/*
* nand_read_page_hwecc - Hardware ECC based page read function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the buffer to store read data
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to read
*
* This functions reads data and checks the data integrity by comparing hardware
* generated ECC values and read ECC values from spare area.
*
* returns: 0 always and updates ECC operation status in to MTD structure
*/
static
int
zynq_nand_read_page_hwecc
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
u8
*
buf
,
int
oob_required
,
int
page
)
{
int
i
,
stat
,
eccsize
=
chip
->
ecc
.
size
;
int
eccbytes
=
chip
->
ecc
.
bytes
;
int
eccsteps
=
chip
->
ecc
.
steps
;
u8
*
p
=
buf
;
u8
*
ecc_calc
=
chip
->
buffers
->
ecccalc
;
u8
*
ecc_code
=
chip
->
buffers
->
ecccode
;
u32
*
eccpos
=
chip
->
ecc
.
layout
->
eccpos
;
unsigned
long
data_phase_addr
=
0
;
unsigned
long
data_width
=
4
;
u8
*
oob_ptr
;
for
(;
(
eccsteps
-
1
);
eccsteps
--
)
{
chip
->
read_buf
(
mtd
,
p
,
eccsize
);
p
+=
eccsize
;
}
chip
->
read_buf
(
mtd
,
p
,
(
eccsize
-
data_width
));
p
+=
(
eccsize
-
data_width
);
/* Set ECC Last bit to 1 */
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_R
;
data_phase_addr
|=
ZYNQ_NAND_ECC_LAST
;
chip
->
IO_ADDR_R
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
read_buf
(
mtd
,
p
,
data_width
);
/* Read the calculated ECC value */
p
=
buf
;
chip
->
ecc
.
calculate
(
mtd
,
p
,
&
ecc_calc
[
0
]);
/* Clear ECC last bit */
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_R
;
data_phase_addr
&=
~
ZYNQ_NAND_ECC_LAST
;
chip
->
IO_ADDR_R
=
(
void
__iomem
*
)
data_phase_addr
;
/* Read the stored ECC value */
oob_ptr
=
chip
->
oob_poi
;
chip
->
read_buf
(
mtd
,
oob_ptr
,
(
mtd
->
oobsize
-
data_width
));
/* de-assert chip select */
data_phase_addr
=
(
unsigned
long
)
chip
->
IO_ADDR_R
;
data_phase_addr
|=
ZYNQ_NAND_CLEAR_CS
;
chip
->
IO_ADDR_R
=
(
void
__iomem
*
)
data_phase_addr
;
oob_ptr
+=
(
mtd
->
oobsize
-
data_width
);
chip
->
read_buf
(
mtd
,
oob_ptr
,
data_width
);
for
(
i
=
0
;
i
<
chip
->
ecc
.
total
;
i
++
)
ecc_code
[
i
]
=
~
(
chip
->
oob_poi
[
eccpos
[
i
]]);
eccsteps
=
chip
->
ecc
.
steps
;
p
=
buf
;
/* Check ECC error for all blocks and correct if it is correctable */
for
(
i
=
0
;
eccsteps
;
eccsteps
--
,
i
+=
eccbytes
,
p
+=
eccsize
)
{
stat
=
chip
->
ecc
.
correct
(
mtd
,
p
,
&
ecc_code
[
i
],
&
ecc_calc
[
i
]);
if
(
stat
<
0
)
mtd
->
ecc_stats
.
failed
++
;
else
mtd
->
ecc_stats
.
corrected
+=
stat
;
}
return
0
;
}
/*
* zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
* read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @page: page number to read
*/
static
int
zynq_nand_read_page_swecc
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
chip
,
u8
*
buf
,
int
oob_required
,
int
page
)
{
int
i
,
eccsize
=
chip
->
ecc
.
size
;
int
eccbytes
=
chip
->
ecc
.
bytes
;
int
eccsteps
=
chip
->
ecc
.
steps
;
u8
*
p
=
buf
;
u8
*
ecc_calc
=
chip
->
buffers
->
ecccalc
;
u8
*
ecc_code
=
chip
->
buffers
->
ecccode
;
u32
*
eccpos
=
chip
->
ecc
.
layout
->
eccpos
;
chip
->
ecc
.
read_page_raw
(
mtd
,
chip
,
buf
,
1
,
page
);
for
(
i
=
0
;
eccsteps
;
eccsteps
--
,
i
+=
eccbytes
,
p
+=
eccsize
)
chip
->
ecc
.
calculate
(
mtd
,
p
,
&
ecc_calc
[
i
]);
for
(
i
=
0
;
i
<
chip
->
ecc
.
total
;
i
++
)
ecc_code
[
i
]
=
chip
->
oob_poi
[
eccpos
[
i
]];
eccsteps
=
chip
->
ecc
.
steps
;
p
=
buf
;
for
(
i
=
0
;
eccsteps
;
eccsteps
--
,
i
+=
eccbytes
,
p
+=
eccsize
)
{
int
stat
;
stat
=
chip
->
ecc
.
correct
(
mtd
,
p
,
&
ecc_code
[
i
],
&
ecc_calc
[
i
]);
if
(
stat
<
0
)
mtd
->
ecc_stats
.
failed
++
;
else
mtd
->
ecc_stats
.
corrected
+=
stat
;
}
return
0
;
}
/*
* zynq_nand_select_chip - Select the flash device
* @mtd: Pointer to the mtd_info structure
* @chip: Chip number to be selected
*
* This function is empty as the NAND controller handles chip select line
* internally based on the chip address passed in command and data phase.
*/
static
void
zynq_nand_select_chip
(
struct
mtd_info
*
mtd
,
int
chip
)
{
return
;
}
/*
* zynq_nand_cmd_function - Send command to NAND device
* @mtd: Pointer to the mtd_info structure
* @command: The command to be sent to the flash device
* @column: The column address for this command, -1 if none
* @page_addr: The page address for this command, -1 if none
*/
static
void
zynq_nand_cmd_function
(
struct
mtd_info
*
mtd
,
unsigned
int
command
,
int
column
,
int
page_addr
)
{
struct
nand_chip
*
chip
=
mtd
->
priv
;
const
struct
zynq_nand_command_format
*
curr_cmd
=
NULL
;
u8
addr_cycles
=
0
;
struct
zynq_nand_info
*
xnand
;
void
*
cmd_addr
;
unsigned
long
cmd_data
=
0
;
unsigned
long
cmd_phase_addr
=
0
;
unsigned
long
data_phase_addr
=
0
;
unsigned
long
end_cmd
=
0
;
unsigned
long
end_cmd_valid
=
0
;
unsigned
long
i
;
xnand
=
(
struct
zynq_nand_info
*
)
chip
->
priv
;
if
(
xnand
->
end_cmd_pending
)
{
/* Check for end command if this command request is same as the
* pending command then return
*/
if
(
xnand
->
end_cmd
==
command
)
{
xnand
->
end_cmd
=
0
;
xnand
->
end_cmd_pending
=
0
;
return
;
}
}
/* Emulate NAND_CMD_READOOB for large page device */
if
((
mtd
->
writesize
>
ZYNQ_NAND_ECC_SIZE
)
&&
(
command
==
NAND_CMD_READOOB
))
{
column
+=
mtd
->
writesize
;
command
=
NAND_CMD_READ0
;
}
/* Get the command format */
for
(
i
=
0
;
(
zynq_nand_commands
[
i
].
start_cmd
!=
NAND_CMD_NONE
||
zynq_nand_commands
[
i
].
end_cmd
!=
NAND_CMD_NONE
);
i
++
)
{
if
(
command
==
zynq_nand_commands
[
i
].
start_cmd
)
curr_cmd
=
&
zynq_nand_commands
[
i
];
}
if
(
curr_cmd
==
NULL
)
return
;
/* Clear interrupt */
writel
((
1
<<
4
),
&
zynq_nand_smc_base
->
cfr
);
/* Get the command phase address */
if
(
curr_cmd
->
end_cmd_valid
==
ZYNQ_NAND_CMD_PHASE
)
end_cmd_valid
=
1
;
if
(
curr_cmd
->
end_cmd
==
NAND_CMD_NONE
)
end_cmd
=
0x0
;
else
end_cmd
=
curr_cmd
->
end_cmd
;
if
((
command
==
NAND_CMD_READ0
)
||
(
command
==
NAND_CMD_SEQIN
))
{
addr_cycles
=
chip
->
onfi_params
.
addr_cycles
&
ZYNQ_NAND_ROW_ADDR_CYCL_MASK
;
addr_cycles
+=
((
chip
->
onfi_params
.
addr_cycles
&
ZYNQ_NAND_COL_ADDR_CYCL_MASK
)
>>
4
);
}
else
{
addr_cycles
=
curr_cmd
->
addr_cycles
;
}
cmd_phase_addr
=
(
unsigned
long
)
xnand
->
nand_base
|
(
addr_cycles
<<
ADDR_CYCLES_SHIFT
)
|
(
end_cmd_valid
<<
END_CMD_VALID_SHIFT
)
|
(
COMMAND_PHASE
)
|
(
end_cmd
<<
END_CMD_SHIFT
)
|
(
curr_cmd
->
start_cmd
<<
START_CMD_SHIFT
);
cmd_addr
=
(
void
__iomem
*
)
cmd_phase_addr
;
/* Get the data phase address */
end_cmd_valid
=
0
;
data_phase_addr
=
(
unsigned
long
)
xnand
->
nand_base
|
(
0x0
<<
CLEAR_CS_SHIFT
)
|
(
end_cmd_valid
<<
END_CMD_VALID_SHIFT
)
|
(
DATA_PHASE
)
|
(
end_cmd
<<
END_CMD_SHIFT
)
|
(
0x0
<<
ECC_LAST_SHIFT
);
chip
->
IO_ADDR_R
=
(
void
__iomem
*
)
data_phase_addr
;
chip
->
IO_ADDR_W
=
chip
->
IO_ADDR_R
;
/* Command phase AXI Read & Write */
if
(
column
!=
-
1
&&
page_addr
!=
-
1
)
{
/* Adjust columns for 16 bit bus width */
if
(
chip
->
options
&
NAND_BUSWIDTH_16
)
column
>>=
1
;
cmd_data
=
column
;
if
(
mtd
->
writesize
>
ZYNQ_NAND_ECC_SIZE
)
{
cmd_data
|=
page_addr
<<
16
;
/* Another address cycle for devices > 128MiB */
if
(
chip
->
chipsize
>
(
128
<<
20
))
{
writel
(
cmd_data
,
cmd_addr
);
cmd_data
=
(
page_addr
>>
16
);
}
}
else
{
cmd_data
|=
page_addr
<<
8
;
}
}
/* Erase */
else
if
(
page_addr
!=
-
1
)
cmd_data
=
page_addr
;
/* Change read/write column, read id etc */
else
if
(
column
!=
-
1
)
{
/* Adjust columns for 16 bit bus width */
if
((
chip
->
options
&
NAND_BUSWIDTH_16
)
&&
((
command
==
NAND_CMD_READ0
)
||
(
command
==
NAND_CMD_SEQIN
)
||
(
command
==
NAND_CMD_RNDOUT
)
||
(
command
==
NAND_CMD_RNDIN
)))
column
>>=
1
;
cmd_data
=
column
;
}
else
;
writel
(
cmd_data
,
cmd_addr
);
if
(
curr_cmd
->
end_cmd_valid
)
{
xnand
->
end_cmd
=
curr_cmd
->
end_cmd
;
xnand
->
end_cmd_pending
=
1
;
}
ndelay
(
100
);
if
((
command
==
NAND_CMD_READ0
)
||
(
command
==
NAND_CMD_RESET
)
||
(
command
==
NAND_CMD_PARAM
)
||
(
command
==
NAND_CMD_GET_FEATURES
))
{
while
(
!
chip
->
dev_ready
(
mtd
))
;
return
;
}
}
/*
* zynq_nand_read_buf - read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static
void
zynq_nand_read_buf
(
struct
mtd_info
*
mtd
,
u8
*
buf
,
int
len
)
{
struct
nand_chip
*
chip
=
mtd
->
priv
;
const
u32
*
nand
=
chip
->
IO_ADDR_R
;
/* Make sure that buf is 32 bit aligned */
if
(((
int
)
buf
&
0x3
)
!=
0
)
{
if
(((
int
)
buf
&
0x1
)
!=
0
)
{
if
(
len
)
{
*
buf
=
readb
(
nand
);
buf
+=
1
;
len
--
;
}
}
if
(((
int
)
buf
&
0x3
)
!=
0
)
{
if
(
len
>=
2
)
{
*
(
u16
*
)
buf
=
readw
(
nand
);
buf
+=
2
;
len
-=
2
;
}
}
}
/* copy aligned data */
while
(
len
>=
4
)
{
*
(
u32
*
)
buf
=
readl
(
nand
);
buf
+=
4
;
len
-=
4
;
}
/* mop up any remaining bytes */
if
(
len
)
{
if
(
len
>=
2
)
{
*
(
u16
*
)
buf
=
readw
(
nand
);
buf
+=
2
;
len
-=
2
;
}
if
(
len
)
*
buf
=
readb
(
nand
);
}
}
/*
* zynq_nand_write_buf - write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static
void
zynq_nand_write_buf
(
struct
mtd_info
*
mtd
,
const
u8
*
buf
,
int
len
)
{
struct
nand_chip
*
chip
=
mtd
->
priv
;
const
u32
*
nand
=
chip
->
IO_ADDR_W
;
/* Make sure that buf is 32 bit aligned */
if
(((
int
)
buf
&
0x3
)
!=
0
)
{
if
(((
int
)
buf
&
0x1
)
!=
0
)
{
if
(
len
)
{
writeb
(
*
buf
,
nand
);
buf
+=
1
;
len
--
;
}
}
if
(((
int
)
buf
&
0x3
)
!=
0
)
{
if
(
len
>=
2
)
{
writew
(
*
(
u16
*
)
buf
,
nand
);
buf
+=
2
;
len
-=
2
;
}
}
}
/* copy aligned data */
while
(
len
>=
4
)
{
writel
(
*
(
u32
*
)
buf
,
nand
);
buf
+=
4
;
len
-=
4
;
}
/* mop up any remaining bytes */
if
(
len
)
{
if
(
len
>=
2
)
{
writew
(
*
(
u16
*
)
buf
,
nand
);
buf
+=
2
;
len
-=
2
;
}
if
(
len
)
writeb
(
*
buf
,
nand
);
}
}
/*
* zynq_nand_device_ready - Check device ready/busy line
* @mtd: Pointer to the mtd_info structure
*
* returns: 0 on busy or 1 on ready state
*/
static
int
zynq_nand_device_ready
(
struct
mtd_info
*
mtd
)
{
/* Check the raw_int_status1 bit */
if
((
readl
(
&
zynq_nand_smc_base
->
csr
))
&
0x40
)
{
/* Clear the interrupt condition */
writel
((
1
<<
4
),
&
zynq_nand_smc_base
->
cfr
);
return
1
;
}
return
0
;
}
/*
* zynq_nand_check_is_16bit_bw_flash - checking for 16 or 8 bit buswidth nand
*
* This function will check nand buswidth whether it supports 16 or 8 bit
* based on the MIO configuration done by FSBL.
*
* User needs to correctly configure the MIO's based on the
* buswidth supported by the nand flash which is present on the board.
*
* function will return -1, if there is no MIO configuration for
* nand flash.
*/
static
int
zynq_nand_check_is_16bit_bw_flash
(
void
)
{
int
is_16bit_bw
=
NAND_BW_UNKNOWN
;
int
mio_num_8bit
=
0
,
mio_num_16bit
=
0
;
mio_num_8bit
=
zynq_slcr_get_mio_pin_status
(
"nand8"
);
if
(
mio_num_8bit
==
ZYNQ_NAND_MIO_NUM_NAND_8BIT
)
is_16bit_bw
=
NAND_BW_8BIT
;
mio_num_16bit
=
zynq_slcr_get_mio_pin_status
(
"nand16"
);
if
((
mio_num_8bit
==
ZYNQ_NAND_MIO_NUM_NAND_8BIT
)
&&
(
mio_num_16bit
==
ZYNQ_NAND_MIO_NUM_NAND_16BIT
))
is_16bit_bw
=
NAND_BW_16BIT
;
return
is_16bit_bw
;
}
static
int
zynq_nand_init
(
struct
nand_chip
*
nand_chip
,
int
devnum
)
{
struct
zynq_nand_info
*
xnand
;
struct
mtd_info
*
mtd
;
unsigned
long
ecc_page_size
;
int
err
=
-
1
;
u8
maf_id
,
dev_id
,
i
;
u8
get_feature
[
4
];
u8
set_feature
[
4
]
=
{
0x08
,
0x00
,
0x00
,
0x00
};
unsigned
long
ecc_cfg
;
int
ondie_ecc_enabled
=
0
;
int
is_16bit_bw
;
xnand
=
calloc
(
1
,
sizeof
(
struct
zynq_nand_info
));
if
(
!
xnand
)
{
printf
(
"%s: failed to allocate
\n
"
,
__func__
);
goto
free
;
}
xnand
->
nand_base
=
(
void
*
)
ZYNQ_NAND_BASEADDR
;
mtd
=
&
nand_info
[
0
];
nand_chip
->
priv
=
xnand
;
mtd
->
priv
=
nand_chip
;
/* Set address of NAND IO lines */
nand_chip
->
IO_ADDR_R
=
xnand
->
nand_base
;
nand_chip
->
IO_ADDR_W
=
xnand
->
nand_base
;
/* Set the driver entry points for MTD */
nand_chip
->
cmdfunc
=
zynq_nand_cmd_function
;
nand_chip
->
dev_ready
=
zynq_nand_device_ready
;
nand_chip
->
select_chip
=
zynq_nand_select_chip
;
/* If we don't set this delay driver sets 20us by default */
nand_chip
->
chip_delay
=
30
;
/* Buffer read/write routines */
nand_chip
->
read_buf
=
zynq_nand_read_buf
;
nand_chip
->
write_buf
=
zynq_nand_write_buf
;
/* Check the NAND buswidth */
/* FIXME this will be changed by using NAND_BUSWIDTH_AUTO */
is_16bit_bw
=
zynq_nand_check_is_16bit_bw_flash
();
if
(
is_16bit_bw
==
NAND_BW_UNKNOWN
)
{
printf
(
"%s: Unable detect NAND based on MIO settings
\n
"
,
__func__
);
goto
free
;
}
else
if
(
is_16bit_bw
==
NAND_BW_16BIT
)
{
nand_chip
->
options
=
NAND_BUSWIDTH_16
;
}
nand_chip
->
bbt_options
=
NAND_BBT_USE_FLASH
;
/* Initialize the NAND flash interface on NAND controller */
if
(
zynq_nand_init_nand_flash
(
nand_chip
->
options
)
<
0
)
{
printf
(
"%s: nand flash init failed
\n
"
,
__func__
);
goto
free
;
}
/* first scan to find the device and get the page size */
if
(
nand_scan_ident
(
mtd
,
1
,
NULL
))
{
printf
(
"%s: nand_scan_ident failed
\n
"
,
__func__
);
goto
fail
;
}
/* Send the command for reading device ID */
nand_chip
->
cmdfunc
(
mtd
,
NAND_CMD_RESET
,
-
1
,
-
1
);
nand_chip
->
cmdfunc
(
mtd
,
NAND_CMD_READID
,
0x00
,
-
1
);
/* Read manufacturer and device IDs */
maf_id
=
nand_chip
->
read_byte
(
mtd
);
dev_id
=
nand_chip
->
read_byte
(
mtd
);
if
((
maf_id
==
0x2c
)
&&
((
dev_id
==
0xf1
)
||
(
dev_id
==
0xa1
)
||
(
dev_id
==
0xb1
)
||
(
dev_id
==
0xaa
)
||
(
dev_id
==
0xba
)
||
(
dev_id
==
0xda
)
||
(
dev_id
==
0xca
)
||
(
dev_id
==
0xac
)
||
(
dev_id
==
0xbc
)
||
(
dev_id
==
0xdc
)
||
(
dev_id
==
0xcc
)
||
(
dev_id
==
0xa3
)
||
(
dev_id
==
0xb3
)
||
(
dev_id
==
0xd3
)
||
(
dev_id
==
0xc3
)))
{
nand_chip
->
cmdfunc
(
mtd
,
NAND_CMD_SET_FEATURES
,
ONDIE_ECC_FEATURE_ADDR
,
-
1
);
for
(
i
=
0
;
i
<
4
;
i
++
)
writeb
(
set_feature
[
i
],
nand_chip
->
IO_ADDR_W
);
/* wait for 1us after writing data with SET_FEATURES command */
ndelay
(
1000
);
nand_chip
->
cmdfunc
(
mtd
,
NAND_CMD_GET_FEATURES
,
ONDIE_ECC_FEATURE_ADDR
,
-
1
);
nand_chip
->
read_buf
(
mtd
,
get_feature
,
4
);
if
(
get_feature
[
0
]
&
0x08
)
{
debug
(
"%s: OnDie ECC flash
\n
"
,
__func__
);
ondie_ecc_enabled
=
1
;
}
else
{
printf
(
"%s: Unable to detect OnDie ECC
\n
"
,
__func__
);
}
}
if
(
ondie_ecc_enabled
)
{
/* bypass the controller ECC block */
ecc_cfg
=
readl
(
&
zynq_nand_smc_base
->
emcr
);
ecc_cfg
&=
~
0xc
;
writel
(
ecc_cfg
,
&
zynq_nand_smc_base
->
emcr
);
/* The software ECC routines won't work
* with the SMC controller
*/
nand_chip
->
ecc
.
mode
=
NAND_ECC_HW
;
nand_chip
->
ecc
.
strength
=
1
;
nand_chip
->
ecc
.
read_page
=
zynq_nand_read_page_raw_nooob
;
nand_chip
->
ecc
.
read_subpage
=
zynq_nand_read_subpage_raw
;
nand_chip
->
ecc
.
write_page
=
zynq_nand_write_page_raw
;
nand_chip
->
ecc
.
read_page_raw
=
zynq_nand_read_page_raw
;
nand_chip
->
ecc
.
write_page_raw
=
zynq_nand_write_page_raw
;
nand_chip
->
ecc
.
read_oob
=
zynq_nand_read_oob
;
nand_chip
->
ecc
.
write_oob
=
zynq_nand_write_oob
;
nand_chip
->
ecc
.
size
=
mtd
->
writesize
;
nand_chip
->
ecc
.
bytes
=
0
;
/* NAND with on-die ECC supports subpage reads */
nand_chip
->
options
|=
NAND_SUBPAGE_READ
;
/* On-Die ECC spare bytes offset 8 is used for ECC codes */
if
(
ondie_ecc_enabled
)
{
nand_chip
->
ecc
.
layout
=
&
ondie_nand_oob_64
;
/* Use the BBT pattern descriptors */
nand_chip
->
bbt_td
=
&
bbt_main_descr
;
nand_chip
->
bbt_md
=
&
bbt_mirror_descr
;
}
}
else
{
/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
nand_chip
->
ecc
.
mode
=
NAND_ECC_HW
;
nand_chip
->
ecc
.
strength
=
1
;
nand_chip
->
ecc
.
size
=
ZYNQ_NAND_ECC_SIZE
;
nand_chip
->
ecc
.
bytes
=
3
;
nand_chip
->
ecc
.
calculate
=
zynq_nand_calculate_hwecc
;
nand_chip
->
ecc
.
correct
=
zynq_nand_correct_data
;
nand_chip
->
ecc
.
hwctl
=
NULL
;
nand_chip
->
ecc
.
read_page
=
zynq_nand_read_page_hwecc
;
nand_chip
->
ecc
.
write_page
=
zynq_nand_write_page_hwecc
;
nand_chip
->
ecc
.
read_page_raw
=
zynq_nand_read_page_raw
;
nand_chip
->
ecc
.
write_page_raw
=
zynq_nand_write_page_raw
;
nand_chip
->
ecc
.
read_oob
=
zynq_nand_read_oob
;
nand_chip
->
ecc
.
write_oob
=
zynq_nand_write_oob
;
switch
(
mtd
->
writesize
)
{
case
512
:
ecc_page_size
=
0x1
;
/* Set the ECC memory config register */
writel
((
ZYNQ_NAND_ECC_CONFIG
|
ecc_page_size
),
&
zynq_nand_smc_base
->
emcr
);
break
;
case
1024
:
ecc_page_size
=
0x2
;
/* Set the ECC memory config register */
writel
((
ZYNQ_NAND_ECC_CONFIG
|
ecc_page_size
),
&
zynq_nand_smc_base
->
emcr
);
break
;
case
2048
:
ecc_page_size
=
0x3
;
/* Set the ECC memory config register */
writel
((
ZYNQ_NAND_ECC_CONFIG
|
ecc_page_size
),
&
zynq_nand_smc_base
->
emcr
);
break
;
default:
/* The software ECC routines won't work with
* the SMC controller
*/
nand_chip
->
ecc
.
mode
=
NAND_ECC_HW
;
nand_chip
->
ecc
.
calculate
=
nand_calculate_ecc
;
nand_chip
->
ecc
.
correct
=
nand_correct_data
;
nand_chip
->
ecc
.
read_page
=
zynq_nand_read_page_swecc
;
/* nand_chip->ecc.read_subpage = nand_read_subpage; */
nand_chip
->
ecc
.
write_page
=
zynq_nand_write_page_swecc
;
nand_chip
->
ecc
.
read_page_raw
=
zynq_nand_read_page_raw
;
nand_chip
->
ecc
.
write_page_raw
=
zynq_nand_write_page_raw
;
nand_chip
->
ecc
.
read_oob
=
zynq_nand_read_oob
;
nand_chip
->
ecc
.
write_oob
=
zynq_nand_write_oob
;
nand_chip
->
ecc
.
size
=
256
;
nand_chip
->
ecc
.
bytes
=
3
;
break
;
}
if
(
mtd
->
oobsize
==
16
)
nand_chip
->
ecc
.
layout
=
&
nand_oob_16
;
else
if
(
mtd
->
oobsize
==
64
)
nand_chip
->
ecc
.
layout
=
&
nand_oob_64
;
else
;
}
/* second phase scan */
if
(
nand_scan_tail
(
mtd
))
{
printf
(
"%s: nand_scan_tailfailed
\n
"
,
__func__
);
goto
fail
;
}
if
(
nand_register
(
devnum
))
goto
fail
;
return
0
;
fail:
free:
kfree
(
xnand
);
return
err
;
}
static
struct
nand_chip
nand_chip
[
CONFIG_SYS_MAX_NAND_DEVICE
];
void
board_nand_init
(
void
)
{
struct
nand_chip
*
nand
=
&
nand_chip
[
0
];
if
(
zynq_nand_init
(
nand
,
0
))
puts
(
"ZYNQ NAND init failed
\n
"
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment