Commit 3a39ee57 authored by Clement Vachet's avatar Clement Vachet

Highlight code blocks

parent ee46880b
Pipeline #2709 failed with stages
...@@ -8,10 +8,10 @@ Note: Data preprocessing stage to generate input files for AI analysis via ir-tp ...@@ -8,10 +8,10 @@ Note: Data preprocessing stage to generate input files for AI analysis via ir-tp
### 1.1. Extracting images of interest from multi-layer 3D TIFF files ### 1.1. Extracting images of interest from multi-layer 3D TIFF files
Example: Example:
''' ```
python3 ./Preprocessing_2DPhaseCorrelation.py --crop_border --input $i --targetdisp $TargetDispImage \ python3 ./Preprocessing_2DPhaseCorrelation.py --crop_border --input $i --targetdisp $TargetDispImage \
--groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --corr $CorrImage --verbose --groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --corr $CorrImage --verbose
''' ```
Notes: Notes:
- Input file is a special multi-layer TIFF file - Input file is a special multi-layer TIFF file
...@@ -21,10 +21,10 @@ Notes: ...@@ -21,10 +21,10 @@ Notes:
### 1.2. Generating 3D TIFF files as direct input files to neural network ir-tp-net ### 1.2. Generating 3D TIFF files as direct input files to neural network ir-tp-net
Example: Example:
''' ```
python3 ./Preprocessing_CombinedImages.py --corr $CorrImage --targetdisp $TargetDispImage \ python3 ./Preprocessing_CombinedImages.py --corr $CorrImage --targetdisp $TargetDispImage \
--groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --output $CombinedImage --groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --output $CombinedImage
''' ```
Notes: Notes:
- Output file is a 3D image with 124 layers - Output file is a 3D image with 124 layers
- scaled to the size of the correlation image - scaled to the size of the correlation image
...@@ -41,20 +41,20 @@ Note: Data postprocessing stage to analyze outputs from AI analysis ...@@ -41,20 +41,20 @@ Note: Data postprocessing stage to analyze outputs from AI analysis
### 3.1. Density analysis ### 3.1. Density analysis
Examples: Examples:
''' ```
python3 ./Compute_Density.py --pred $i --groundtruth $GroundTruthImage --adjtilesdim 1 --output $Density_CSVFile --inclusionmask $InclusionMask_File --exclusionmask $ExclusionMask_File --threshold 2.0 --verbose python3 ./Compute_Density.py --pred $i --groundtruth $GroundTruthImage --adjtilesdim 1 --output $Density_CSVFile --inclusionmask $InclusionMask_File --exclusionmask $ExclusionMask_File --threshold 2.0 --verbose
''' ```
Note: input file is the predicted disparity map Note: input file is the predicted disparity map
### 3.2. RMSE analysis ### 3.2. RMSE analysis
Example: Example:
''' ```
python3 ./Compute_RMSE_WithThreshold.py --pred $i --groundtruth $GroundTruthImage --adjtilesdim $AdjTilesDim --threshold $RMSE_Threshold --output $RMSE_CSVFile python3 ./Compute_RMSE_WithThreshold.py --pred $i --groundtruth $GroundTruthImage --adjtilesdim $AdjTilesDim --threshold $RMSE_Threshold --output $RMSE_CSVFile
python3 ./Compute_RMSE_WithFiltering.py --pred $i --groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --adjtilesdim 1 --threshold $Threshold --output $RMSE_CSVFile --output_mask $RMSEFiltering_MaskFile python3 ./Compute_RMSE_WithFiltering.py --pred $i --groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --adjtilesdim 1 --threshold $Threshold --output $RMSE_CSVFile --output_mask $RMSEFiltering_MaskFile
''' ```
Note: input file is the predicted disparity map Note: input file is the predicted disparity map
...@@ -63,9 +63,9 @@ Note: input file is the predicted disparity map ...@@ -63,9 +63,9 @@ Note: input file is the predicted disparity map
Quality control stage generating multi-layer 3D tiff file Quality control stage generating multi-layer 3D tiff file
''' ```
python3 ./Compute_Inference_QCImage.py --pred $i --groundtruth $GroundTruthImage --targetdisp $TargetDispImage --mask $DataFilteringMask --threshold 2.0 --output $InferenceQC_File --verbose python3 ./Compute_Inference_QCImage.py --pred $i --groundtruth $GroundTruthImage --targetdisp $TargetDispImage --mask $DataFilteringMask --threshold 2.0 --output $InferenceQC_File --verbose
''' ```
Notes: Notes:
- input file is the predicted disparity map - input file is the predicted disparity map
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment